ICSOutlier-package {ICSOutlier}R Documentation

Outlier Detection Using Invariant Coordinate Selection

Description

Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.

Details

The DESCRIPTION file:

Package: ICSOutlier
Type: Package
Title: Outlier Detection Using Invariant Coordinate Selection
Version: 0.4-0
Date: 2023-12-13
Authors@R: c(person("Klaus", "Nordhausen", email = "klausnordhausenR@gmail.com", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-3758-8501")), person("Aurore", "Archimbaud", email = "aurore.archimbaud@live.fr", role = "aut", comment = c(ORCID = "0000-0002-6511-9091")), person("Anne", "Ruiz-Gazen", email = "anne.ruiz-gazen@tse-fr.eu", role = "aut", comment = c(ORCID = "0000-0001-8970-8061")))
Author: Klaus Nordhausen [aut, cre] (<https://orcid.org/0000-0002-3758-8501>), Aurore Archimbaud [aut] (<https://orcid.org/0000-0002-6511-9091>), Anne Ruiz-Gazen [aut] (<https://orcid.org/0000-0001-8970-8061>)
Maintainer: Klaus Nordhausen <klausnordhausenR@gmail.com>
Depends: R (>= 3.0.0), methods, ICS (>= 1.4-0), moments
Imports: graphics, grDevices, mvtnorm, parallel
Suggests: ICSClust, REPPlab, testthat (>= 3.0.0)
Description: Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.
License: GPL (>= 2)
NeedsCompilation: no
Packaged: 2023-09-18 08:47:44 UTC; admin
Repository: CRAN
Date/Publication: 2023-09-18 09:30:08 UTC
Config/testthat/edition: 3
RoxygenNote: 7.2.3
Roxygen: list(markdown = TRUE)
Encoding: UTF-8

Index of help topics:

HTP                     Production Measurements of High-Tech Parts -
                        Full Rank Case
HTP2                    Production Measurements of High-Tech Parts -
                        Singular Case
HTP3                    Production Measurements of High-Tech Parts -
                        Nearly Singular Case
ICSOutlier-package      Outlier Detection Using Invariant Coordinate
                        Selection
ICS_outlier             Outlier Detection Using ICS
comp.norm.test          Selection of Nonnormal Invariant Components
                        Using Marginal Normality Tests
comp.simu.test          Selection of Nonnormal Invariant Components
                        Using Simulations
comp_norm_test          Selection of Nonnormal Invariant Components
                        Using Marginal Normality Tests
comp_simu_test          Selection of Nonnormal Invariant Components
                        Using Simulations
dist.simu.test          Cut-Off Values Using Simulations for the
                        Detection of Extreme ICS Distances
dist_simu_test          Cut-Off Values Using Simulations for the
                        Detection of Extreme ICS Distances
ics.distances           Squared ICS Distances for Invariant Coordinates
ics.outlier             Outlier Detection Using ICS
icsOut-class            Class icsOut
ics_distances           Squared ICS Distances for Invariant Coordinates
plot.ICS_Out            Distances Plot for an 'ICS_Out' Object
plot.icsOut             Distances Plot for an icsOut Object
print.ICS_Out           Vector of Outlier Indicators
print.icsOut            Vector of Outlier Indicators
summary.ICS_Out         Summary of an 'ICS_Out' Object Summarizes an
                        'ICS_Out' object in an informative way.
summary.icsOut          Summarize a icsOut object

Author(s)

Klaus Nordhausen [aut, cre] (<https://orcid.org/0000-0002-3758-8501>), Aurore Archimbaud [aut] (<https://orcid.org/0000-0002-6511-9091>), Anne Ruiz-Gazen [aut] (<https://orcid.org/0000-0001-8970-8061>)

Maintainer: Klaus Nordhausen <klausnordhausenR@gmail.com>

References

Archimbaud, A., Nordhausen, K. and Ruiz-Gazen, A. (2018), ICS for multivariate outlier detection with application to quality control. Computational Statistics & Data Analysis, 128:184-199. ISSN 0167-9473. doi:10.1016/j.csda.2018.06.011.

Archimbaud, A., Nordhausen, K. and Ruiz-Gazen, A. (2018), ICSOutlier: Unsupervised Outlier Detection for Low-Dimensional Contamination Structure. The R Journal, 10:234-250. doi:10.32614/RJ-2018-034.


[Package ICSOutlier version 0.4-0 Index]