ICsingleSNP {ICSKAT} | R Documentation |
ICsingleSNP.R
Description
Burden test from ICSKAT() except do a separate burden test for each SNP in gMat, one at a time.
Usage
ICsingleSNP(
left_dmat,
right_dmat,
lt,
rt,
obs_ind,
tpos_ind,
gMat,
null_beta,
solveItt,
p
)
Arguments
left_dmat |
n*(p+nknots+2) design matrix for left end of interval. |
right_dmat |
n*(p+nknots+2) design matrix for right end of interval. |
lt |
n*1 vector of left side of time interval. |
rt |
n*1 vector of right side of time interval. |
obs_ind |
n*1 vector of whether the event was observed before last follow-up. |
tpos_ind |
n*1 vector of whether the event was observed after follow-up started (t>0). |
gMat |
n*q genotype matrix. |
null_beta |
(p+nknots+2)*1 vector of coefficients for null model. |
solveItt |
Inverse of (p+nknots+2)*(p+nknots+2) Fisher information matrix for null model coefficients. |
p |
number of non-SNP covariates. |
Value
A list with the elements:
testStatsVec |
p*1 vector of score test statistics |
pVec |
p*1 vector of score test p-values |
Examples
set.seed(0)
gMat <- matrix(data=rbinom(n=2000, size=2, prob=0.3), nrow=100)
xMat <- matrix(data=rnorm(200), nrow=100)
bhFunInv <- function(x) {x}
obsTimes <- 1:5
etaVec <- rep(0, 100)
outcomeDat <- gen_IC_data(bhFunInv = bhFunInv, obsTimes = obsTimes, windowHalf = 0.1,
probMiss = 0.1, etaVec = etaVec)
lt <- outcomeDat$leftTimes
rt <- outcomeDat$rightTimes
tpos_ind <- as.numeric(lt > 0)
obs_ind <- as.numeric(rt != Inf)
dmats <- make_IC_dmat(xMat, lt, rt, obs_ind, tpos_ind)
nullFit <- ICSKAT_fit_null(init_beta = rep(0, 5), left_dmat = dmats$left_dmat,
right_dmat=dmats$right_dmat, obs_ind = obs_ind, tpos_ind = tpos_ind, lt = lt, rt = rt)
solveItt <- solve(nullFit$Itt)
ICsingleSNP(left_dmat = dmats$left_dmat, right_dmat=dmats$right_dmat, lt = lt, rt = rt,
obs_ind = obs_ind, tpos_ind = tpos_ind, gMat = gMat, null_beta = nullFit$beta_fit,
solveItt = solveItt, p=2)
[Package ICSKAT version 0.2.0 Index]