covAxis {ICS} | R Documentation |
One step Tyler Shape Matrix
Description
This matrix can be used to get the principal axes from ics
,
which is then known as principal axis analysis.
Usage
covAxis(X, na.action = na.fail)
Arguments
X |
numeric data matrix or dataframe. |
na.action |
a function which indicates what should happen when the data contain 'NA's. Default is to fail. |
Details
The covAxis
matrix V
is a given for a n \times p
data matrix X as
p \ ave_{i}\{[(x_{i}-\bar{x})S^{-1}(x_{i}-\bar{x})']^{-1}(x_{i}-\bar{x})'(x_{i}-\bar{x})\},
where \bar{x}
is the mean vector and S
the regular covariance matrix.
covAxis
can be used to perform a Prinzipal Axis Analysis (Critchley et al. 2006) using the function ics
.
In that case, for a centered data matrix X, covAxis
can be used as S2 in ics
, where S1 should be in that
case the regular covariance matrix.
Value
A matrix containing the estimated one step Tyler shape matrix.
Author(s)
Klaus Nordhausen
References
Critchley , F., Pires, A. and Amado, C. (2006), Principal axis analysis, Technical Report, 06/14, The Open University Milton Keynes.
Tyler, D.E., Critchley, F., D?mbgen, L. and Oja, H. (2009), Invariant co-ordinate selecetion, Journal of the Royal Statistical Society,Series B, 71, 549–592. <doi:10.1111/j.1467-9868.2009.00706.x>.
See Also
Examples
data(iris)
iris.centered <- sweep(iris[,1:4], 2, colMeans(iris[,1:4]), "-")
iris.paa <- ics(iris.centered, cov, covAxis, stdKurt = FALSE)
summary(iris.paa)
plot(iris.paa, col=as.numeric(iris[,5]))
mean(iris.paa@gKurt)
emp.align <- iris.paa@gKurt
emp.align
screeplot(iris.paa)
abline(h = 1)