estW {ICGE} | R Documentation |
INCA Statistic
Description
Assume that n units are divided into k clusters C1,...,Ck, and consider a fixed unit x0. Function estW
calculates the INCA statistic W(x0)
and the related U_i
statistics.
Usage
estW(d, dx0, pert = "onegroup")
Arguments
d |
a distance matrix or a |
dx0 |
an n-vector containing the distances d0j between x0 and unit j. |
pert |
an n-vector that indicates which group each unit belongs to. Note that the expected values of |
Value
The function returns an object of class incaest
which is a list containing the following components:
Wvalue |
is the INCA statistic |
Uvalue |
is a vector containing the statistics |
Note
For a correct geometrical interpretation it is convenient to verify whether the distance matrix d is Euclidean.
Author(s)
Itziar Irigoien itziar.irigoien@ehu.eus; Konputazio Zientziak eta Adimen Artifiziala, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Spain.
Conchita Arenas carenas@ub.edu; Departament d'Estadistica, Universitat de Barcelona, Barcelona, Spain.
References
Arenas, C. and Cuadras, C.M. (2002). Some recent statistical methods based on distances. Contributions to Science, 2, 183–191.
Irigoien, I. and Arenas, C. (2008). INCA: New statistic for estimating the number of clusters and identifying atypical units. Statistics in Medicine, 27(15), 2948–2973.
See Also
Examples
data(iris)
d <- dist(iris[,1:4])
# characteristics of a specific flower (likely group 1)
x0 <- c(5.3, 3.6, 1.1, 0.1)
# distances between flower x0 and the rest of flowers in iris
dx0 <- rep(0,150)
for (i in 1:150){
dif <-x0-iris[i,1:4]
dx0[i] <- sqrt(sum(dif*dif))
}
estW(d, dx0, iris[,5])