dgower {ICGE} | R Documentation |
Gower Distance for Mixed Variables
Description
dgower
computes and returns the Gower distance matrix for mixed variables.
Usage
dgower(x, type = list())
Arguments
x |
data matrix. |
type |
it is a list with components |
Details
The distance between two
pairs of objects i and j is obtained as
\sqrt{2(1-s_{ij})}
where s_{ij}
is the Gower's similarity coefficient for mixed data. This function allows
to include missing values (as NA
) and therefore calculates distances based on Gower's weighted similarity coefficient.
Value
A dist
object with distance information.
Note
There is the function daisy()
in cluster
package which can perform the Gower distance for mixed variables. The difference is that in daisy()
the distance is calculated as d(i,j)=1-s_{ij}
and in dgower()
it is calculated as dij=sqrt(1-s_{ij})
.
Author(s)
Itziar Irigoien itziar.irigoien@ehu.eus; Konputazio Zientziak eta Adimen Artifiziala, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Spain.
Conchita Arenas carenas@ub.edu; Departament d'Estadistica, Universitat de Barcelona, Barcelona, Spain.
References
Gower, J.C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857–871.
See Also
dist
, dmahal
,
dbhatta
, dcor
, dproc2
Examples
#Generate 10 objects in dimension 6
# Quantitative variables
mu <- sample(1:10, 2, replace=TRUE)
xc <- matrix(rnorm(10*2, mean = mu, sd = 1), ncol=2, byrow=TRUE)
# Binary variables
xb <- cbind(rbinom(10, 1, 0.1), rbinom(10, 1, 0.5), rbinom(10, 1, 0.9))
# Nominal variables
xn <- matrix(sample(1:3, 10, replace=TRUE), ncol=1)
x <- cbind(xc, xb, xn)
# Distances
d <- dgower(x, type=list(cuant=1:2, bin=3:5, nom=6))