arl {IAcsSPCR} | R Documentation |
ARL for Lucas's Cusum Chart for Attribute Data
Description
Calculates ARL for Lucas's Cusum Chart for Attribute Data
Usage
arl(h=2,k=2,lambda=1,shift=.5)
Arguments
h |
input - this is the decision limit. It should be an even number, so that h/2 for the FIR feature will also be an integer. |
k |
input - this is the reference value. It should be calculated as (mu_d-mu_a)/ln(mu_d-mu_a), where mu_a is the in-control Poisson mean and mu_d mean to detect. k should be rounded to an integer. |
lambda |
input - this is the in-control Poisson mean. |
shift |
input - this is the number of standard deviation shift from the in-control mean to the mean to detect , i.e., lambda+shift*sqrt(lambda)=mu_d. |
Value
returned list containing the ARL and the ARL with FIR.
Author(s)
John Lawson
References
Lucas, J.M.(1985) "Counted data cusums", Technometrics, Vol. 27, No. 2, pp129-143.
Examples
library(IAcsSPCR)
arl(h=6,k=2,lambda=1.88,shift=0)
arl(h=6,k=2,lambda=1.88,shift=.9627)
{
}
[Package IAcsSPCR version 1.2.1 Index]