hyperbChangePars {HyperbolicDist} | R Documentation |
Change Parameterizations of the Hyperbolic Distribution
Description
This function interchanges between the following 4 parameterizations of the hyperbolic distribution:
1. \pi, \zeta, \delta, \mu
2. \alpha, \beta, \delta, \mu
3. \phi, \gamma, \delta, \mu
4. \xi, \chi, \delta, \mu
The first three are given in Barndorff-Nielsen and Blæsild (1983), and the fourth in Prause (1999)
Usage
hyperbChangePars(from, to, Theta, noNames = FALSE)
Arguments
from |
The set of parameters to change from. |
to |
The set of parameters to change to. |
Theta |
"from" parameter vector consisting of 4 numerical elements. |
noNames |
Logical. When |
Details
In the 4 parameterizations, the following must be positive:
1. \zeta,\delta
2. \alpha,\delta
3. \phi,\gamma,\delta
4. \xi,\delta
Furthermore, note that in the second parameterization
\alpha
must be greater than the absolute value of
\beta
, while in the fourth parameterization, \xi
must be less than one, and the absolute value of \chi
must
be less than \xi
.
Value
A numerical vector of length 4 representing Theta
in the
to
parameterization.
Author(s)
David Scott d.scott@auckland.ac.nz, Jennifer Tso, Richard Trendall
References
Barndorff-Nielsen, O. and Blæsild, P. (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700–707. New York: Wiley.
Prause, K. (1999) The generalized hyperbolic models: Estimation, financial derivatives and risk measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
See Also
Examples
Theta1 <- c(-2,1,3,0) # Parameterization 1
Theta2 <- hyperbChangePars(1, 2, Theta1) # Convert to parameterization 2
Theta2 # Parameterization 2
hyperbChangePars(2, 1, as.numeric(Theta2)) # Convert back to parameterization 1