| hyperbChangePars {HyperbolicDist} | R Documentation |
Change Parameterizations of the Hyperbolic Distribution
Description
This function interchanges between the following 4 parameterizations of the hyperbolic distribution:
1. \pi, \zeta, \delta, \mu
2. \alpha, \beta, \delta, \mu
3. \phi, \gamma, \delta, \mu
4. \xi, \chi, \delta, \mu
The first three are given in Barndorff-Nielsen and Blæsild (1983), and the fourth in Prause (1999)
Usage
hyperbChangePars(from, to, Theta, noNames = FALSE)
Arguments
from |
The set of parameters to change from. |
to |
The set of parameters to change to. |
Theta |
"from" parameter vector consisting of 4 numerical elements. |
noNames |
Logical. When |
Details
In the 4 parameterizations, the following must be positive:
1. \zeta,\delta
2. \alpha,\delta
3. \phi,\gamma,\delta
4. \xi,\delta
Furthermore, note that in the second parameterization
\alpha must be greater than the absolute value of
\beta, while in the fourth parameterization, \xi
must be less than one, and the absolute value of \chi must
be less than \xi.
Value
A numerical vector of length 4 representing Theta in the
to parameterization.
Author(s)
David Scott d.scott@auckland.ac.nz, Jennifer Tso, Richard Trendall
References
Barndorff-Nielsen, O. and Blæsild, P. (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700–707. New York: Wiley.
Prause, K. (1999) The generalized hyperbolic models: Estimation, financial derivatives and risk measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
See Also
Examples
Theta1 <- c(-2,1,3,0) # Parameterization 1
Theta2 <- hyperbChangePars(1, 2, Theta1) # Convert to parameterization 2
Theta2 # Parameterization 2
hyperbChangePars(2, 1, as.numeric(Theta2)) # Convert back to parameterization 1