ghypCalcRange {HyperbolicDist} | R Documentation |
Range of a Generalized Hyperbolic Distribution
Description
Given the parameter vector Theta of a generalized hyperbolic distribution,
this function determines the range outside of which the density
function is negligible, to a specified tolerance. The parameterization used
is the (\alpha,\beta)
one (see
dghyp
). To use another parameterization, use
ghypChangePars
.
Usage
ghypCalcRange(Theta, tol = 10^(-5), density = TRUE, ...)
Arguments
Theta |
Value of parameter vector specifying the hyperbolic distribution. |
tol |
Tolerance. |
density |
Logical. If |
... |
Extra arguments for calls to |
Details
The particular generalized hyperbolic distribution being considered is
specified by the value of the parameter value Theta
.
If density = TRUE
, the function gives a range, outside of which
the density is less than the given tolerance. Useful for plotting the
density. Also used in determining break points for the separate
sections over which numerical integration is used to determine the
distribution function. The points are found by using
uniroot
on the density function.
If density = FALSE
, the function returns the message:
"Distribution function bounds not yet implemented
".
Value
A two-component vector giving the lower and upper ends of the range.
Author(s)
David Scott d.scott@auckland.ac.nz
References
Barndorff-Nielsen, O. and Blæsild, P (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700–707. New York: Wiley.
See Also
Examples
Theta <- c(1,5,3,1,0)
maxDens <- dghyp(ghypMode(Theta), Theta)
ghypRange <- ghypCalcRange(Theta, tol = 10^(-3)*maxDens)
ghypRange
curve(dghyp(x, Theta), ghypRange[1], ghypRange[2])
## Not run: ghypCalcRange(Theta, tol = 10^(-3), density = FALSE)