prior_posterior {HuraultMisc} | R Documentation |
Compare prior to posterior
Description
-
combine_prior_posterior
subsets and binds the prior and posterior dataframes. -
plot_prior_posterior
plots posterior CI alongside prior CI. -
compute_prior_influence
computes diagnostics of how the posterior is influenced by the prior. -
plot_prior_influence
plots diagnostics fromcompute_prior_influence
.
Usage
combine_prior_posterior(prior, post, pars = NULL, match_exact = TRUE)
plot_prior_posterior(
prior,
post,
pars = NULL,
match_exact = TRUE,
lb = "5%",
ub = "95%"
)
compute_prior_influence(
prior,
post,
pars = NULL,
match_exact = TRUE,
remove_index_prior = TRUE
)
plot_prior_influence(prior, post, pars = NULL, match_exact = TRUE)
check_model_sensitivity(prior, post, pars = NULL)
Arguments
prior |
Dataframe of prior parameter estimates.
The dataframe is expected to have columns |
post |
Dataframe of posterior parameter estimates, with same columns as |
pars |
Vector of parameter names to plot. Defaults to all parameters presents in |
match_exact |
Logical indicating whether parameters should be matched exactly (e.g. |
lb |
Name of the column in |
ub |
Name of the column in |
remove_index_prior |
Whether to remove the index variable for |
Details
Posterior shrinkage (
PostShrinkage = 1 - Var(Post) / Var(Prior)
), capturing how much the model is learning. Shrinkage near 0 indicates that the data provides little information beyond the prior. Shrinkage near 1 indicates that the data is much more informative than the prior.'Mahalanobis' distance between the mean posterior and the prior (
DistPrior
), capturing whether the prior "includes" the posterior.
Value
-
combine_prior_posterior
returns a dataframe with the same columns as in prior and post and a columnDistribution
. -
compute_prior_influence
returns a dataframe with columns:Variable
,Index
,PostShrinkage
,DistPrior.
-
plot_prior_posterior
andplot_prior_influence
returns a ggplot object
Note
For plot_prior_posterior
, parameters with the same name but different indices are plotted together.
If their prior distribution is the same, it can be useful to only keep one index in prior
.
If not, we can use match_exact = FALSE
to plot parameter[1]
and parameter[2]
separately.
References
M. Betancourt, “Towards a Principled Bayesian Workflow”, 2018.