| prior_posterior {HuraultMisc} | R Documentation |
Compare prior to posterior
Description
-
combine_prior_posteriorsubsets and binds the prior and posterior dataframes. -
plot_prior_posteriorplots posterior CI alongside prior CI. -
compute_prior_influencecomputes diagnostics of how the posterior is influenced by the prior. -
plot_prior_influenceplots diagnostics fromcompute_prior_influence.
Usage
combine_prior_posterior(prior, post, pars = NULL, match_exact = TRUE)
plot_prior_posterior(
prior,
post,
pars = NULL,
match_exact = TRUE,
lb = "5%",
ub = "95%"
)
compute_prior_influence(
prior,
post,
pars = NULL,
match_exact = TRUE,
remove_index_prior = TRUE
)
plot_prior_influence(prior, post, pars = NULL, match_exact = TRUE)
check_model_sensitivity(prior, post, pars = NULL)
Arguments
prior |
Dataframe of prior parameter estimates.
The dataframe is expected to have columns |
post |
Dataframe of posterior parameter estimates, with same columns as |
pars |
Vector of parameter names to plot. Defaults to all parameters presents in |
match_exact |
Logical indicating whether parameters should be matched exactly (e.g. |
lb |
Name of the column in |
ub |
Name of the column in |
remove_index_prior |
Whether to remove the index variable for |
Details
Posterior shrinkage (
PostShrinkage = 1 - Var(Post) / Var(Prior)), capturing how much the model is learning. Shrinkage near 0 indicates that the data provides little information beyond the prior. Shrinkage near 1 indicates that the data is much more informative than the prior.'Mahalanobis' distance between the mean posterior and the prior (
DistPrior), capturing whether the prior "includes" the posterior.
Value
-
combine_prior_posteriorreturns a dataframe with the same columns as in prior and post and a columnDistribution. -
compute_prior_influencereturns a dataframe with columns:Variable,Index,PostShrinkage,DistPrior. -
plot_prior_posteriorandplot_prior_influencereturns a ggplot object
Note
For plot_prior_posterior, parameters with the same name but different indices are plotted together.
If their prior distribution is the same, it can be useful to only keep one index in prior.
If not, we can use match_exact = FALSE to plot parameter[1] and parameter[2] separately.
References
M. Betancourt, “Towards a Principled Bayesian Workflow”, 2018.