| smean.sd {Hmisc} | R Documentation |
Compute Summary Statistics on a Vector
Description
A number of statistical summary functions is provided for use
with summary.formula and summarize (as well as
tapply and by themselves).
smean.cl.normal computes 3 summary variables: the sample mean and
lower and upper Gaussian confidence limits based on the t-distribution.
smean.sd computes the mean and standard deviation.
smean.sdl computes the mean plus or minus a constant times the
standard deviation.
smean.cl.boot is a very fast implementation of the basic
nonparametric bootstrap for obtaining confidence limits for the
population mean without assuming normality.
These functions all delete NAs automatically.
smedian.hilow computes the sample median and a selected pair of
outer quantiles having equal tail areas.
Usage
smean.cl.normal(x, mult=qt((1+conf.int)/2,n-1), conf.int=.95, na.rm=TRUE)
smean.sd(x, na.rm=TRUE)
smean.sdl(x, mult=2, na.rm=TRUE)
smean.cl.boot(x, conf.int=.95, B=1000, na.rm=TRUE, reps=FALSE)
smedian.hilow(x, conf.int=.95, na.rm=TRUE)
Arguments
x |
for summary functions |
na.rm |
defaults to |
mult |
for |
conf.int |
for |
B |
number of bootstrap resamples for |
reps |
set to |
Value
a vector of summary statistics
Author(s)
Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com
See Also
Examples
set.seed(1)
x <- rnorm(100)
smean.sd(x)
smean.sdl(x)
smean.cl.normal(x)
smean.cl.boot(x)
smedian.hilow(x, conf.int=.5) # 25th and 75th percentiles
# Function to compute 0.95 confidence interval for the difference in two means
# g is grouping variable
bootdif <- function(y, g) {
g <- as.factor(g)
a <- attr(smean.cl.boot(y[g==levels(g)[1]], B=2000, reps=TRUE),'reps')
b <- attr(smean.cl.boot(y[g==levels(g)[2]], B=2000, reps=TRUE),'reps')
meandif <- diff(tapply(y, g, mean, na.rm=TRUE))
a.b <- quantile(b-a, c(.025,.975))
res <- c(meandif, a.b)
names(res) <- c('Mean Difference','.025','.975')
res
}