abs.error.pred {Hmisc} | R Documentation |
Indexes of Absolute Prediction Error for Linear Models
Description
Computes the mean and median of various absolute errors related to
ordinary multiple regression models. The mean and median absolute
errors correspond to the mean square due to regression, error, and
total. The absolute errors computed are derived from \hat{Y} -
\mbox{median($\hat{Y}$)}
,
\hat{Y} - Y
, and Y -
\mbox{median($Y$)}
. The function also
computes ratios that correspond to R^2
and 1 - R^2
(but
these ratios do not add to 1.0); the R^2
measure is the ratio of
mean or median absolute \hat{Y} - \mbox{median($\hat{Y}$)}
to the mean or median absolute Y -
\mbox{median($Y$)}
. The 1 - R^2
or SSE/SST
measure is the mean or median absolute \hat{Y} - Y
divided by the mean or median absolute \hat{Y} -
\mbox{median($Y$)}
.
Usage
abs.error.pred(fit, lp=NULL, y=NULL)
## S3 method for class 'abs.error.pred'
print(x, ...)
Arguments
fit |
a fit object typically from |
lp |
a vector of predicted values (Y hat above) if |
y |
a vector of response variable values if |
x |
an object created by |
... |
unused |
Value
a list of class abs.error.pred
(used by
print.abs.error.pred
) containing two matrices:
differences
and ratios
.
Author(s)
Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
fh@fharrell.com
References
Schemper M (2003): Stat in Med 22:2299-2308.
Tian L, Cai T, Goetghebeur E, Wei LJ (2007): Biometrika 94:297-311.
See Also
lm
, ols
, cor
,
validate.ols
Examples
set.seed(1) # so can regenerate results
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- exp(x1+x2+rnorm(100))
f <- lm(log(y) ~ x1 + poly(x2,3), y=TRUE)
abs.error.pred(lp=exp(fitted(f)), y=y)
rm(x1,x2,y,f)