| distributionH-class {HistDAWass} | R Documentation |
Class distributionH.
Description
Class "distributionH" desfines an histogram object
The class describes a histogram by means of its cumulative distribution
function. The methods are develoved accordingly to the L2 Wasserstein
distance between distributions.
A histogram object can be created also with the function distributionH(...), the costructor function for creating an object containing the description of
a histogram.
Usage
## S4 method for signature 'distributionH'
initialize(
.Object,
x = numeric(0),
p = numeric(0),
m = numeric(0),
s = numeric(0)
)
distributionH(x = numeric(0), p = numeric(0))
Arguments
.Object |
the type ("distributionH") |
x |
a numeric vector. it is the domain of the distribution (i.e. the extremes of bins). |
p |
a numeric vector (of the same lenght of x). It is the cumulative distribution function CDF. |
m |
(optional) a numeric value. Is the mean of the histogram. |
s |
(optional) a numeric positive value. It is the standard deviation of a histogram. |
Details
Class distributionH defines a histogram object
Value
A distributionH object
Objects from the Class
Objects can be created by calls of the form
new("distributionH", x, p, m, s).
Author(s)
Antonio Irpino
References
Irpino, A., Verde, R. (2015) Basic statistics for distributional symbolic variables: a new metric-based approach Advances in Data Analysis and Classification, DOI 10.1007/s11634-014-0176-4
See Also
meanH computes the mean. stdH computes the standard deviation.
Examples
#---- initialize a distributionH object mydist
# from a simple histogram
# ----------------------------
# | Bins | Prob | cdf |
# ----------------------------
# | [1,2) | 0.4 | 0.4 |
# | [2,3] | 0.6 | 1.0 |
# ----------------------------
# | Tot. | 1.0 | - |
# ----------------------------
mydist <- new("distributionH", c(1, 2, 3), c(0, 0.4, 1))
str(mydist)
# OUTPUT
# Formal class 'distributionH' [package "HistDAWass"] with 4 slots
# ..@ x: num [1:3] 1 2 3 the quantiles
# ..@ p: num [1:3] 0 0.4 1 the cdf
# ..@ m: num 2.1 the mean
# ..@ s: num 0.569 the standard deviation
# or using
mydist <- distributionH(x = c(1, 2, 3), p = c(0, 0.4, 1))