HhP.reg {HhP} | R Documentation |
Hierarchical Heterogeneity Regression Analysis.
Description
The main function for Transfer learning for tensor graphical models.
Usage
HhP.reg(lambda, whole.data, n, q, p, beta.init,
merge.all=FALSE, trace=FALSE, selection.sub=FALSE)
Arguments
lambda |
The sequences of the tuning parameters (lambda1 and lambda2). |
whole.data |
The input data analyzed (a list including the response and design matrix). |
n |
The sample size. |
q |
The dimension of type 1 features. |
p |
The dimension of type 2 features. |
beta.init |
The Initial values of regression coefficients. |
merge.all |
the logical variable, the default is F. |
trace |
the logical variable, whether or not to output the number of identified subgroups during the search for parameters. |
selection.sub |
the logical variable, the default is F. |
Value
A result list.
Author(s)
Mingyang Ren, Qingzhao Zhang, Sanguo Zhang, Tingyan Zhong, Jian Huang, Shuangge Ma. Maintainer: Mingyang Ren renmingyang17@mails.ucas.ac.cn.
References
Mingyang Ren, Qingzhao Zhang, Sanguo Zhang, Tingyan Zhong, Jian Huang, Shuangge Ma. 2022. Hierarchical Cancer Heterogeneity Analysis Based On Histopathological Imaging Features. Biometrics, <DOI: 10.1111/biom.13544>.
Examples
library(HhP)
library(Matrix)
library(MASS)
library(fmrs)
data(example.data.reg)
n = example.data.reg$n
q = example.data.reg$q
p = example.data.reg$p
beta.init.list = gen_int_beta(n, p, q, example.data.reg)
beta.init = beta.init.list$beta.init
lambda = genelambda.obo()
result = HhP.reg(lambda, example.data.reg, n, q, p, beta.init)
index.list = evaluation.sum(n,q,p, result$admmres, result$abic.n,
result$admmres2, example.data.reg$Beta0, result$bic.var)
index.list$err.s