HWChisqStats {HardyWeinberg} | R Documentation |
Fast computation of chi-square statistics for Hardy-Weinberg equilibrium
Description
HWChisqStats
is a function for the fast computation of chi-square
statistics (or the corresponding p-values) for a large set of bi-allelic markers (typically SNPs).
Usage
HWChisqStats(X, x.linked = FALSE, pvalues = FALSE)
Arguments
X |
A matrix with genotype counts, one row per marker. |
x.linked |
Logical indicating whether the markers are autosomal ( |
pvalues |
Logical indicated whether chi-square statistics should be returned ( |
Details
Matrix X
should strictly comply with the following format. For
an autosomal dataset is should contain the 3 genotype counts in order
(AA,AB,BB). For an X-chromosomal dataset it should contain the 5
genotype counts in order (A,B,AA,AB,BB) where A and B are the male
counts and AA, AB and BB the female counts.
This function was written for speed improvement, and should be much
faster than looping over the rows of X
with HWChisq
. There
is no error checking on the supplied data matrix.
Value
A vector of chi-square statistics
Author(s)
Jan Graffelman jan.graffelman@upc.edu
References
Graffelman, J. and Weir, B.S. (2016) Testing for Hardy-Weinberg equilibrium at 2 bi-allelic genetic markers on the X chromosome.
See Also
Examples
#
# Autosomal example
#
set.seed(123)
X <- HWData(1000,100)
monom <- (X[,2]==0 & X[,1]==0) | (X[,2]==0 & X[,3]==0)
X <- X[!monom,] # exclude monomorphics
Chisq.stats <- HWChisqStats(X,x.linked=FALSE,pvalues=FALSE)
Chisq.pvals <- HWChisqStats(X,x.linked=FALSE,pvalues=TRUE)
#
# X-chromosomal example
#
X <- HWData(1000,100,n.males=50,nA=75,x.linked=TRUE)
Chisq.stats <- HWChisqStats(X,x.linked=TRUE,pvalues=FALSE)
Chisq.pvals <- HWChisqStats(X,x.linked=TRUE,pvalues=TRUE)