| r {HYPEtools} | R Documentation |
Pearson product-moment correlation coefficient r
Description
Pearson product-moment correlation coefficient calculation, a specific case of function cor.
Usage
r(sim, obs, ...)
## S3 method for class 'HypeSingleVar'
r(sim, obs, progbar = TRUE, ...)
Arguments
sim |
|
obs |
|
... |
Ignored. |
progbar |
Logical, if |
Details
This function wraps a call to cor(x = obs, y = sim, use = "na.or.complete", method = "pearson").
Method r.HypeSingleVar calculates Pearson's r for imported HYPE outputs with single variables for several
catchments, i.e. time and map files, optionally multiple model runs combined, typically results from calibration runs.
Value
r.HypeSingleVar returns a 2-dimensional array of Pearson correlation coefficients for all SUBIDs and model
iterations provided in argument sim, with values in the same order
as the second and third dimension in sim, i.e. [subid, iteration].
See Also
cor, on which the function is based. ReadWsOutput for importing HYPE calibration results.
Examples
# Create dummy data, discharge observations with added white noise as model simulations
te1 <- ReadObs(filename = system.file("demo_model", "Qobs.txt", package = "HYPEtools"))
te1 <- HypeSingleVar(x = array(data = unlist(te1[, -1]) + runif(n = nrow(te1),
min = -.5, max = .5),
dim = c(nrow(te1), ncol(te1) - 1, 1),
dimnames = list(rownames(te1), colnames(te1)[-1])),
datetime = te1$DATE, subid = obsid(te1), hype.var = "cout")
te2 <- ReadObs(filename = system.file("demo_model", "Qobs.txt", package = "HYPEtools"))
te2 <- HypeSingleVar(x = array(data = unlist(te2[, -1]),
dim = c(nrow(te2), ncol(te2) - 1, 1),
dimnames = list(rownames(te2), colnames(te2)[-1])),
datetime = te2$DATE, subid = obsid(te2), hype.var = "rout")
# Pearson correlation
r(sim = te1, obs = te2, progbar = FALSE)