r {HYPEtools} | R Documentation |
Pearson product-moment correlation coefficient r
Description
Pearson product-moment correlation coefficient calculation, a specific case of function cor
.
Usage
r(sim, obs, ...)
## S3 method for class 'HypeSingleVar'
r(sim, obs, progbar = TRUE, ...)
Arguments
sim |
|
obs |
|
... |
Ignored. |
progbar |
Logical, if |
Details
This function wraps a call to cor(x = obs, y = sim, use = "na.or.complete", method = "pearson")
.
Method r.HypeSingleVar
calculates Pearson's r for imported HYPE outputs with single variables for several
catchments, i.e. time and map files, optionally multiple model runs combined, typically results from calibration runs.
Value
r.HypeSingleVar
returns a 2-dimensional array of Pearson correlation coefficients for all SUBIDs and model
iterations provided in argument sim
, with values in the same order
as the second and third dimension in sim
, i.e. [subid, iteration]
.
See Also
cor
, on which the function is based. ReadWsOutput
for importing HYPE calibration results.
Examples
# Create dummy data, discharge observations with added white noise as model simulations
te1 <- ReadObs(filename = system.file("demo_model", "Qobs.txt", package = "HYPEtools"))
te1 <- HypeSingleVar(x = array(data = unlist(te1[, -1]) + runif(n = nrow(te1),
min = -.5, max = .5),
dim = c(nrow(te1), ncol(te1) - 1, 1),
dimnames = list(rownames(te1), colnames(te1)[-1])),
datetime = te1$DATE, subid = obsid(te1), hype.var = "cout")
te2 <- ReadObs(filename = system.file("demo_model", "Qobs.txt", package = "HYPEtools"))
te2 <- HypeSingleVar(x = array(data = unlist(te2[, -1]),
dim = c(nrow(te2), ncol(te2) - 1, 1),
dimnames = list(rownames(te2), colnames(te2)[-1])),
datetime = te2$DATE, subid = obsid(te2), hype.var = "rout")
# Pearson correlation
r(sim = te1, obs = te2, progbar = FALSE)