plotModelDiagnostics {HVT} | R Documentation |
Make the diagnostic plots for hierarchical voronoi tessellations
Description
This is the main function that generates diagnostic plots for hierarchical voronoi tessellations models and scoring.
Usage
plotModelDiagnostics(model_obj)
Arguments
model_obj |
List. A list obtained from the trainHVT function or scoreHVT function |
Value
For trainHVT, Minimum Intra-DataPoint Distance Plot, Minimum Intra-Centroid Distance Plot Mean Absolute Deviation Plot, Distribution of Number of Observations in Cells, for Training Data and Mean Absolute Deviation Plot for Validation Data are plotted. For scoreHVT Mean Absolute Deviation Plot for Training Data and Validation Data are plotted
Author(s)
Shubhra Prakash <shubhra.prakash@mu-sigma.com>
See Also
Examples
data("EuStockMarkets")
hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE,quant_method="kmeans",diagnose = TRUE,
hvt_validation = TRUE)
plotModelDiagnostics(hvt.results)
[Package HVT version 24.5.2 Index]