plotAnimatedFlowmap {HVT} | R Documentation |
Generating flow maps and animations based on transition probabilities
Description
This is the main function for generating flow maps and animations based on transition probabilities including self states and excluding self states. Flow maps are a type of data visualization used to represent the transition probability of different states. Animations are the gifs used to represent the movement of data through the cells.
Usage
plotAnimatedFlowmap(
hvt_model_output,
transition_probability_df,
df,
animation = NULL,
flow_map = NULL,
fps_time = 1,
fps_state = 1,
time_duration = 2,
state_duration = 2,
cellid_column,
time_column
)
Arguments
hvt_model_output |
List. Output from a trainHVT function. |
transition_probability_df |
List. Output from getTransitionProbability function |
df |
Data frame. The input dataframe should contain two columns, cell ID from scoreHVT function and time stamp of that dataset. |
animation |
Character. Type of animation ('state_based', 'time_based', 'All' or NULL) |
flow_map |
Character. Type of flow map ('self_state', 'without_self_state', 'All' or NULL) |
fps_time |
Numeric. A numeric value for the frames per second of the time transition gif. (Must be a numeric value and a factor of 100). Default value is 1. |
fps_state |
Numeric. A numeric value for the frames per second of the state transition gif. (Must be a numeric value and a factor of 100). Default value is 1. |
time_duration |
Numeric. A numeric value for the duration of the time transition gif. Default value is 2. |
state_duration |
Numeric. A numeric value for the duration of the state transition gif. Default value is 2. |
cellid_column |
Character. Name of the column containing cell IDs. |
time_column |
Character. Name of the column containing time stamps |
Value
A list of flow maps and animation gifs.
Author(s)
PonAnuReka Seenivasan <ponanureka.s@mu-sigma.com>, Vishwavani <vishwavani@mu-sigma.com>
See Also
trainHVT
scoreHVT
getTransitionProbability
Examples
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
DAX = EuStockMarkets[, "DAX"],
SMI = EuStockMarkets[, "SMI"],
CAC = EuStockMarkets[, "CAC"],
FTSE = EuStockMarkets[, "FTSE"])
hvt.results<- trainHVT(dataset,n_cells = 60, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE,quant_method = "kmeans")
scoring <- scoreHVT(dataset, hvt.results)
cell_id <- scoring$scoredPredictedData$Cell.ID
time_stamp <- dataset$date
dataset <- data.frame(cell_id, time_stamp)
table <- getTransitionProbability(dataset, cellid_column = "cell_id",time_column = "time_stamp")
plots <- plotAnimatedFlowmap(hvt_model_output = hvt.results, transition_probability_df = table,
df = dataset, animation = 'All', flow_map = 'All',fps_time = 1,fps_state = 1,time_duration = 2,
state_duration = 2,cellid_column = "cell_id", time_column = "time_stamp")