| highDimensionARI {HTSCluster} | R Documentation | 
Calculate ARI for high-dimensional data via data splits
Description
This function is used to calculate Adjusted Rand Index (ARI) values for high-dimensional data.
Usage
highDimensionARI(x, y, splits = 2, verbose = FALSE) 
Arguments
| x | Vector of classification labels | 
| y | Vector of classification labels | 
| splits | Number of subsets data should be split into | 
| verbose | 
 | 
Value
Value of Adjusted Rand Index for samples x and y
Author(s)
Andrea Rau
References
Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31(9):1420-1427.
Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available at https://inria.hal.science/inria-00638082.
[Package HTSCluster version 2.0.11 Index]