PoisMixMean {HTSCluster} | R Documentation |
Calculate the conditional per-cluster mean of each observation
Description
This function is used to calculate the conditional per-cluster mean expression for all observations. This value corresponds to
\boldsymbol{\mu} = (\mu_{ijlk}) = (\hat{w}_i \hat{\lambda}_{jk})
for the PMM-I model and
\boldsymbol{\mu} = (\mu_{ijlk}) = (\hat{w}_i s_{jl} \hat{\lambda}_{jk})
for the PMM-II model.
Usage
PoisMixMean(y, g, conds, s, lambda)
Arguments
y |
(n x q) matrix of observed counts for n observations and q variables |
g |
Number of clusters |
conds |
Vector of length q defining the condition (treatment group) for each variable (column) in |
s |
Estimate of normalized per-variable library size |
lambda |
(d x |
Value
A list of length g
containing the (n x q) matrices of mean expression for all observations, conditioned on each of the g
clusters
Author(s)
Andrea Rau
References
Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31(9):1420-1427.
Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available at https://inria.hal.science/inria-00638082.
See Also
PoisMixClus
for Poisson mixture model estimation and model selection
Examples
set.seed(12345)
## Simulate data as shown in Rau et al. (2011)
## Library size setting "A", high cluster separation
## n = 200 observations
simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions
s <- colSums(y) / sum(y) ## TC estimate of lib size
## Run the PMM-II model for g = 3
## "TC" library size estimate, EM algorithm
run <- PoisMixClus(y, g = 3, norm = "TC", conds = conds)
pi.est <- run$pi
lambda.est <- run$lambda
## Calculate the per-cluster mean for each observation
means <- PoisMixMean(y, g = 3, conds, s, lambda.est)