Xdc.sevsample {HMP} | R Documentation |
Likelihood-Ratio-Test Statistics: Several Sample Dirichlet-Multinomial Test Comparison
Description
This routine provides the value of the Likelihood-Ratio-Test Statistics and the corresponding p-value for evaluating the several sample Dirichlet-Multinomial parameter test comparison.
Usage
Xdc.sevsample(group.data, epsilon = 10^(-4), est = "mom")
Arguments
group.data |
A list where each element is a matrix of taxonomic counts(columns) for each sample(rows). (See Notes 1 and 2 in details) |
epsilon |
Convergence tolerance. To terminate, the difference between two succeeding log-likelihoods must be smaller than epsilon. Default value is 10^(-4). |
est |
The type of parameter estimator to be used with the Likelihood-ratio-test statistics, 'mle' or 'mom'. Default value is 'mom'. (See Note 3 in details) |
Details
To assess whether the Dirichlet parameter vector, \mathbf{\alpha}_{\mathrm{m}}=\mathbf{\pi}_{\mathrm{m}} \frac{1-\theta_{\mathrm{m}}}{\theta_{\mathrm{m}}}
(a function of the RAD probability-mean vector and overdispersion), observed in J
groups of microbiome samples are equal to each other, the following hypothesis
\mathrm{H}_{\mathrm{o}}: \mathbf{\alpha}_{\mathrm{1}} = \cdots =\mathbf{\alpha}_{\mathrm{m}}=\cdots= \mathbf{\alpha}_{\mathrm{J}}=\mathbf{\alpha}_{\mathrm{o}}
versus \mathrm{H}_{\mathrm{a}}: \mathbf{\alpha}_{\mathrm{m}} \ne \mathbf{\alpha}_{\mathrm{o}}, m=1, \ldots, J
can be tested. The null hypothesis implies that the HMP samples across groups have the same mean and overdispersion, indicating that the RAD models are identical. In particular, the likelihood-ratio test statistic is used, which is given by,
x_{\mathrm{dc}}=-2 \log\left\{\frac{L\left(\mathbf{\alpha}_{\mathrm{o}}; \mathbf{X}_{\mathrm{1}},\ldots, \mathbf{X}_{\mathrm{J}} \right)}{L\left(\mathbf{\alpha}_{\mathrm{1}},\ldots,\mathbf{\alpha}_{\mathrm{J}}; \mathbf{X}_{\mathrm{1}},\ldots, \mathbf{X}_{\mathrm{J}} \right)}\right\}.
The asymptotic null distribution of x_{\mathrm{dc}}
follows a Chi-square with degrees of freedom equal to (J-1)*K, where K is the number of taxa (Wilks, 1938).
Note 1: The matrices in
group.data
must contain the same taxa, in the same order.Note 2: Each taxa should be present in at least 1 sample, a column with all 0's may result in errors and/or invalid results.
Note 3: 'mle' will take significantly longer time and may not be optimal for small sample sizes; 'mom' will provide more conservative results in such a case.
Value
A list containing the Xdc statistics and p-value.
References
Wilks, S. S. (1938). The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. The Annals of Mathematical Statistics 9, 60-62.
Examples
data(saliva)
data(throat)
### Combine the data sets into a single list
group.data <- list(saliva, throat)
xdc <- Xdc.sevsample(group.data)
xdc