estimate_nuisance_pc {HMC} | R Documentation |
The function for nuisance parameter estimation in simple_pc_testing() and debiased_pc_testing().
Description
The function for nuisance parameter estimation in simple_pc_testing() and debiased_pc_testing().
Usage
estimate_nuisance_pc(
nuisance_sample_1,
nuisance_sample_2 = NULL,
pca_method = "sparse_pca",
mean_method = "naive",
num_latent_factor = 1,
local_environment = NA
)
Arguments
nuisance_sample_1 |
Group 1 sample. Each row is a subject and each column corresponds to a feature. |
nuisance_sample_2 |
Group 2 sample. Each row is a subject and each column corresponds to a feature. |
pca_method |
Methods used to estimate principle component The default is "sparse_pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity. |
mean_method |
Methods used to estimate the mean vector. Default is sample mean "naive". There is also a hard-thresholding sparse estiamtor "hard". |
num_latent_factor |
Number of principle to be estimated/tested. Default is 1. |
local_environment |
A environment for hyperparameters shared between folds. |
Value
A list of estimated nuisance quantities.
estimate_leading_pc |
Leading principle components |
estimate_mean_1 |
Sample mean for group 1 |
estimate_mean_2 |
Sample mean for group 1 |
estimate_eigenvalue |
Eigenvalue for each principle compoenent. |
estimate_noise_variance |
Noise variance, I need this to construct block-diagonal estimates of the covariance matrix. |