hmb {HMB} | R Documentation |
Hierarchical Model-Based estmation
Description
Hierarchical Model-Based estmation
Usage
hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
Arguments
y_S |
Response object that can be coersed into a column vector. The
|
X_S |
Object of predictors variables that can be coersed into a matrix.
The rows of |
X_Sa |
Object of predictor variables that can be coresed into a matrix. The set Sa is the intermediate sample. |
Z_Sa |
Object of predictor variables that can be coresed into a matrix.
The set Sa is the intermediate sample, and the Z-variables often some
sort of auxilairy, inexpensive data. The rows of |
Z_U |
Object of predictor variables that can be coresed into a matrix. The set U is the universal population sample. |
Details
The HMB assumes two models
For a sample from the superpopulation, the HMB assumes
Value
A fitted object of class HMB.
References
Saarela, S., Holm, S., Grafström, A., Schnell, S., Næsset, E., Gregoire, T.G., Nelson, R.F. & Ståhl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information, Annals of Forest Science, 73(4), 895-910.
Saarela, S., Holm, S., Healey, S.P., Andersen, H.-E., Petersson, H., Prentius, W., Patterson, P.L., Næsset, E., Gregoire, T.G. & Ståhl, G. (2018). Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data, Remote Sensing, 10(11), 1832.
See Also
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
hmb_model = hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
hmb_model