resid_marginal.default {HLMdiag} | R Documentation |
Marginal residuals
Description
Calculates marginal residuals of lmerMod
and lme
model objects.
Usage
## Default S3 method:
resid_marginal(object, type)
## S3 method for class 'lmerMod'
resid_marginal(object, type = c("raw", "pearson", "studentized", "cholesky"))
## S3 method for class 'lme'
resid_marginal(object, type = c("raw", "pearson", "studentized", "cholesky"))
Arguments
object |
an object of class |
type |
a character string specifying what type of residuals should be calculated.
It is set to |
Details
For a model of the form Y = X \beta + Z b + \epsilon
,
four types of marginal residuals can be calculated:
raw
r = Y - X \hat{beta}
pearson
r / \sqrt{ diag(\hat{Var}(Y)})
studentized
r / \sqrt{ diag(\hat{Var}(r)})
cholesky
\hat{C}^{-1} r
where\hat{C}\hat{C}^\prime = \hat{Var}(Y)
Value
A vector of marginal residuals.
References
Singer, J. M., Rocha, F. M. M., & Nobre, J. S. (2017). Graphical Tools for Detecting Departures from Linear Mixed Model Assumptions and Some Remedial Measures. International Statistical Review, 85, 290–324.
Schabenberger, O. (2004) Mixed Model Influence Diagnostics, in Proceedings of the Twenty-Ninth SAS Users Group International Conference, SAS Users Group International.