qHIMA {HIMA} | R Documentation |
High-dimensional quantile mediation analysis
Description
qHIMA
is used to estimate and test high-dimensional quantile mediation effects.
Usage
qHIMA(
X,
M,
Y,
Z,
penalty = c("MCP", "SCAD", "lasso"),
topN = NULL,
tau = 0.5,
scale = TRUE,
Bonfcut = 0.05,
verbose = FALSE,
...
)
Arguments
X |
a vector of exposure. |
M |
a |
Y |
a vector of continuous outcome. Do not use data.frame or matrix. |
Z |
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be |
penalty |
the penalty to be applied to the model (a parameter passed to function |
topN |
an integer specifying the number of top markers from sure independent screening.
Default = |
tau |
quantile level of outcome. Default = 0.5. A vector of tau is accepted. |
scale |
logical. Should the function scale the data? Default = |
Bonfcut |
Bonferroni-corrected p value cutoff applied to define and select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
... |
other arguments. |
Value
A data.frame containing mediation testing results of selected mediators (Bonferroni-adjusted p value <Bonfcut
).
ID: index of selected significant mediator.
alpha: coefficient estimates of exposure (X) –> mediators (M).
alpha_se: standard error for alpha.
beta: coefficient estimates of mediators (M) –> outcome (Y) (adjusted for exposure).
beta_se: standard error for beta.
Bonferroni.p: statistical significance of the mediator (Bonferroni-corrected p value).
References
Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2023. (In press)
Examples
## Not run:
# Note: In the following example, M1, M2, and M3 are true mediators.
data(himaDat)
head(himaDat$Example5$PhenoData)
qHIMA.fit <- qHIMA(X = himaDat$Example5$PhenoData$Treatment,
M = himaDat$Example5$Mediator,
Y = himaDat$Example5$PhenoData$Outcome,
Z = himaDat$Example5$PhenoData[, c("Sex", "Age")],
Bonfcut = 0.05,
tau = c(0.3, 0.5, 0.7),
scale = FALSE,
verbose = TRUE)
qHIMA.fit
## End(Not run)