residual.plots {HH} | R Documentation |
Residual plots for a linear model.
Description
Residual plots for a linear model. Four sets of plots are produced: (1) response against each of the predictor variables, (2) residuals against each of the predictor variables, (3) partial residuals for each predictor against that predictor ("partial residuals plots", and (4) partial residuals against the residuals of each predictor regressed on the other predictors ("added variable plots").
Usage
residual.plots(lm.object, X=dft$x,
layout=c(dim(X)[2],1),
par.strip.text=list(cex=.8),
scales.cex=.6,
na.action=na.pass,
y.relation="free",
...)
Arguments
lm.object |
An object inheriting from |
X |
The x matrix of predictor variables used in the linear model
|
layout , par.strip.text |
trellis or lattice arguments. |
scales.cex |
|
na.action |
A function to filter missing data. See |
y.relation |
See |
... |
Other arguments for |
Value
A list of four trellis objects, one for each of the four sets of
plots. The objects are named "y.X"
, "res.X"
"pres.X"
, "pres.Xj"
. The default "printing" of the
result will produce four pages of plots, one set per page. They are
often easier to read when all four sets appear as separate rows on one
page (this usually requires an oversize device), or two rows are
printed on each of two pages.
Author(s)
Richard M. Heiberger <rmh@temple.edu>
References
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://link.springer.com/book/10.1007/978-1-4939-2122-5
See Also
Examples
if.R(s={
longley <- data.frame(longley.x, Employed = longley.y)
},r={
data(longley)
})
longley.lm <- lm( Employed ~ . , data=longley, x=TRUE, y=TRUE)
## 'x=TRUE, y=TRUE' are needed to pass the S-Plus CMD check.
## They may be needed if residual.plots() is inside a nested set of
## function calls.
tmp <- residual.plots(longley.lm)
## print two rows per page
print(tmp[[1]], position=c(0, 0.5, 1, 1.0), more=TRUE)
print(tmp[[2]], position=c(0, 0.0, 1, 0.5), more=FALSE)
print(tmp[[3]], position=c(0, 0.5, 1, 1.0), more=TRUE)
print(tmp[[4]], position=c(0, 0.0, 1, 0.5), more=FALSE)
## print as a single trellis object
ABCD <- do.call(rbind, lapply(tmp, as.vector))
dimnames(ABCD)[[1]] <- dimnames(tmp[[1]])[[1]]
ABCD