plot.mmc.multicomp {HH} | R Documentation |
MMC (Mean–mean Multiple Comparisons) plot.
Description
MMC (Mean–mean Multiple Comparisons) plot. The plot
method documented
here is no longer recommended for R; use mmcplot
instead.
This method is still necessary for S-Plus.
Usage
## S3 method for class 'mmc.multicomp'
plot(x,
xlab="contrast value",
ylab=none$ylabel,
focus=none$focus,
main= main.method.phrase,
main2=main2.method.phrase,
main.method.phrase=
paste("multiple comparisons of means of", ylab),
main2.method.phrase=paste("simultaneous ",
100*(1-none$alpha),"% confidence limits, ",
method, " method", sep="" ),
ry.mmc=TRUE,
key.x=par()$usr[1]+ diff(par()$usr[1:2])/20,
key.y=par()$usr[3]+ diff(par()$usr[3:4])/3,
method=if (is.null(mca)) lmat$method else mca$method,
print.lmat=(!is.null(lmat)),
print.mca=(!is.null(mca) && (!print.lmat)),
iso.name=TRUE,
x.offset=0,
col.mca.signif="red", col.mca.not.signif="black",
lty.mca.signif=1, lty.mca.not.signif=6,
lwd.mca.signif=1, lwd.mca.not.signif=1,
col.lmat.signif="blue", col.lmat.not.signif="black",
lty.lmat.signif=1, lty.lmat.not.signif=6,
lwd.lmat.signif=1, lwd.lmat.not.signif=1,
lty.iso=7, col.iso="darkgray", lwd.iso=1,
lty.contr0=2, col.contr0="darkgray", lwd.contr0=1,
decdigits.ybar=2,
...
)
Arguments
x |
|
xlab |
|
ylab |
name of response variable |
focus |
define the factor to compute contrasts of. |
main , main2 |
main and second line of title of plot |
main.method.phrase , main2.method.phrase |
default expressions for title of plot |
ry.mmc |
range of values on the y-axis. It is similar to
|
key.x , key.y |
location of the key displayed when |
method |
method used to construct contrasts and confidence
intervals. See the |
print.lmat |
logical. If |
print.mca |
logical. If |
iso.name |
logical. If |
x.offset |
amount to move the vertical 0 line to the left or right to reduce overprinting of labels and plotted lines. |
col.mca.signif , lty.mca.signif , lwd.mca.signif |
color, line type, line width for significant pairwise contrasts. |
col.mca.not.signif , lty.mca.not.signif , lwd.mca.not.signif |
color, line type, line width for non-significant pairwise contrasts. |
col.lmat.signif , lty.lmat.signif , lwd.lmat.signif |
color, line type, line width for significant user-specified contrasts. |
col.lmat.not.signif , lty.lmat.not.signif , lwd.lmat.not.signif |
color, line type, line width for non-significant user-specified contrasts. |
lty.iso , col.iso , lwd.iso |
color, line type, line width for the isomeans grid. |
lty.contr0 , col.contr0 , lwd.contr0 |
color, line type, line width for the vertical contrast=0 line. |
decdigits.ybar |
number of decimal digits in the left-axis labels. |
... |
other arguments, currently ignored. |
Note
plot.mmc.multicomp
chooses sensible defaults for its many
arguments. They will often need manual adjustment. The examples show
several types of adjustments. We have changed the centering and scaling
to avoid overprinting of label information. By default the significant
contrasts are shown in a more intense color than the nonsignificant
contrasts.
We have an option to reduce the color intensity of the isomeans grid.
When there is overprinting of labels (a consequence of level means being
close together), a tiebreaker plot may be needed. See ?MMC
for
an example.
Author(s)
Richard M. Heiberger <rmh@temple.edu>
References
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://link.springer.com/book/10.1007/978-1-4939-2122-5
Heiberger, Richard M. and Holland, Burt (2006). "Mean–mean multiple comparison displays for families of linear contrasts." Journal of Computational and Graphical Statistics, 15:937–955.
Hsu, J. and Peruggia, M. (1994). "Graphical representations of Tukey's multiple comparison method." Journal of Computational and Graphical Statistics, 3:143–161.
See Also
Examples
data(catalystm)
catalystm1.aov <- aov(concent ~ catalyst, data=catalystm)
summary(catalystm1.aov)
## See ?MMC to see why these contrasts are chosen
catalystm.lmat <- cbind("AB-D" =c( 1, 1, 0,-2),
"A-B" =c( 1,-1, 0, 0),
"ABD-C"=c( 1, 1,-3, 1))
dimnames(catalystm.lmat)[[1]] <- levels(catalystm$catalyst)
catalystm.mmc <-
if.R(r={mmc(catalystm1.aov, linfct = mcp(catalyst = "Tukey"),
focus.lmat=catalystm.lmat)}
,s={multicomp.mmc(catalystm1.aov, focus.lmat=catalystm.lmat,
plot=FALSE)}
)
## Not run:
## pairwise contrasts, default settings
plot(catalystm.mmc, print.lmat=FALSE)
## End(Not run)
## Centering, scaling, emphasize significant contrasts.
## Needed in R with 7in x 7in default plot window.
## Not needed in S-Plus with 4x3 aspect ratio of plot window.
plot(catalystm.mmc, x.offset=2.1, ry.mmc=c(50,58), print.lmat=FALSE)
## user-specified contrasts
plot(catalystm.mmc, x.offset=2.1, ry.mmc=c(50,58))
## reduce intensity of isomeans grid, number isomeans grid lines
plot(catalystm.mmc, x.offset=2.1, ry.mmc=c(50,58),
lty.iso=2, col.iso='darkgray', iso.name=FALSE)
## both pairwise contrasts and user-specified contrasts
plot(catalystm.mmc, x.offset=2.1, ry.mmc=c(50,58), lty.iso=2,
col.iso='darkgray', print.mca=TRUE)
## Not run:
## newer mmcplot
mmcplot(catalystm.mmc)
mmcplot(catalystm.mmc, type="lmat")
## End(Not run)