norm.curve {HH} | R Documentation |
plot a normal or a t-curve with both x and z axes.
Description
Plot a normal curve or a t-curve with both x (with mean
and se
as specified) and z or t (mean=0, se=1) axes.
Shade a region for rejection region, acceptance region, confidence
interval.
The density axis is marked in units appropriate for the z or t axis.
The existence of any of the arguments se
, sd
, n
forces dual x
and (z
or t
) scales. When none of these
arguments
are used, the main title defaults to
"Standard Normal Density N(0,1)"
and only the z
scale is
printed. A second density curve, appropriate for an alternative
hypothesis
is displayed when the argument axis.name="z1"
is specified.
The shaded area is printed on the plot.
When the optional argument df.t
is specified, then a
t-distribution with df.t
degrees of freedom is plotted.
norm.observed
plots a vertical line with arrowhead markers at
the location of the observed xbar.
normal.and.t.dist
is a driver function that uses all the
others. It's primary function is drawing a plot. It returns
an invisible list containing the values it calculated and
displayed on the graph.
norm.curve
draws the curves and filled areas as requested
by the normal.and.t.dist
function. Any out of bounds
errors (for example, with normal.and.t.dist(deg.free=1)
)
are suppressed with par(err=-1)
by this function and
restored to the previous value when the norm.curve
function completes.
Usage
normal.and.t.dist(mu.H0 = 0,
mu.H1 = NA,
obs.mean = 0,
std.dev = 1,
n = NA,
deg.freedom = NA,
alpha.left = alpha.right,
alpha.right = .05,
Use.mu.H1 = FALSE,
Use.obs.mean = FALSE,
Use.alpha.left = FALSE,
Use.alpha.right= TRUE,
hypoth.or.conf = 'Hypoth',
xmin = NA,
xmax = NA,
gxbar.min = NA,
gxbar.max = NA,
cex.crit = 1.2,
polygon.density= -1,
polygon.lwd = 4,
col.mean = 'limegreen',
col.mean.label = 'limegreen',
col.alpha = 'blue',
col.alpha.label= 'blue',
col.beta = 'red',
col.beta.label = 'red',
col.conf = 'palegreen',
col.conf.arrow = 'darkgreen',
col.conf.label = 'darkgreen'
)
norm.setup(xlim=c(-2.5,2.5),
ylim = c(0, 0.4)/se,
mean=0,
main=main.calc,
se=sd/sqrt(n), sd=1, n=1,
df.t=NULL,
Use.obs.mean=TRUE,
...)
norm.curve(mean=0, se=sd/sqrt(n),
critical.values=mean + se*c(-1, 1)*z.975,
z=if(se==0) 0 else
do.call("seq", as.list(c((par()$usr[1:2]-mean)/se, length=109))),
shade, col="blue",
axis.name=ifelse(is.null(df.t) || df.t==Inf, "z", "t"),
second.axis.label.line=3,
sd=1, n=1,
df.t=NULL,
axis.name.expr=axis.name,
Use.obs.mean=TRUE,
col.label=col,
hypoth.or.conf="Hypoth",
col.conf.arrow=par("col"),
col.conf.label=par("col"),
col.crit=ifelse(hypoth.or.conf=="Hypoth", 'blue', col.conf.arrow),
cex.crit=1.2,
polygon.density=-1,
polygon.lwd=4,
col.border=ifelse(is.na(polygon.density), FALSE, col),
...)
norm.observed(xbar, t.xbar, t.xbar.H1=NULL,
col="green",
p.val=NULL, p.val.x=par()$usr[2]+ left.margin,
t.or.z=ifelse(is.null(deg.free) || deg.free==Inf, "z", "t"),
t.or.z.position=par()$usr[1]-left.margin,
cex.small=par()$cex*.7, col.label=col,
xbar.negt=NULL, cex.large=par()$cex,
left.margin=.15*diff(par()$usr[1:2]),
sided="", deg.free=NULL)
norm.outline(dfunction, left, right, mu.H0, se, deg.free=NULL,
col.mean="green")
Arguments
xlim , ylim , xmin , xmax , gxbar.min , gxbar.max |
|
mean |
Mean of the normal distribution in xbar-scale,
used in calls to |
se |
standard error of the normal distribution in xbar-scale,
used in calls to |
sd , std.dev , n |
standard deviation and sample size of the normal
distribution in x-scale. These may be used as an alternate way of
specifying the standard error |
df.t , deg.freedom |
Degrees of freedom for the t distribution. When
|
critical.values |
Critical values in xbar-scale. A scalar value implies a one-sided test. A vector of two values implies a two-sided test. |
main |
Main title. |
z |
z-values (standardized to N(0,1)) used as base of plot. |
shade |
Valid values for shade are "right", "left", "inside", "outside", "none". Default is "right" for one-sided critical.values and "outside" for two-sided critical values. |
col |
color of the shaded region. |
col.label , col.alpha , col.alpha.label |
color of the area of the shaded rejection region and its label. |
col.beta , col.beta.label |
color of the area of the shaded region For Type II error and its label. |
hypoth.or.conf |
|
col.conf |
Color of plot within confidence limits. |
col.conf.arrow |
Color of arrow denoting confidence limits. |
col.conf.label |
Color of label giving confidence level. |
col.mean.label |
Color of label for observed mean. |
col.crit , cex.crit |
Color and cex of critical values. |
axis.name , axis.name.expr |
defaults to |
second.axis.label.line |
Defaults to |
xbar , obs.mean |
xbar-value of the observed data. |
t.xbar |
t-value of the observed data under the null hypothesis. |
... |
Other arguments which are ignored. |
Use.obs.mean |
Logical. If |
alpha.right , alpha.left |
Area in tail of curve. |
Use.alpha.right , Use.alpha.left |
Logical. If |
t.xbar.H1 |
t-value under alternate hypothesis. |
p.val |
under specified hypothesis |
p.val.x , t.or.z.position |
location on x-axis to put label |
t.or.z |
label for axis. |
cex.small |
cex for left margin labels of axis. |
xbar.negt |
location in data scale of negative t- or z-value corresponding to observed x-value. Used for two-sided p-values. |
cex.large |
cex for labels in top margin. |
left.margin |
distance to the left of |
sided |
type of test. |
deg.free |
degrees of freedom or |
dfunction |
|
left |
left end of interval |
right |
right end of interval |
mu.H0 , mu.H1 |
mean under the null hypothesis and alternative hypothesis. |
Use.mu.H1 |
Logical. If |
col.mean |
Color of outline. |
polygon.density , polygon.lwd , col.border |
|
Value
An invisible list containing the
calculated values of probabilities and critical values in the data
scale, the null hypothesis z- or t-scale, and the alternative
hypothesis z- or t-scale, as specified. The components are:
beta.left, beta.middle, beta.right, crit.val, crit.val.H1,
crit.val.H1.left, crit.val.left, crit.val.left.z, crit.val.z, obs.mean.H0.p.val,
obs.mean.H0.side, obs.mean.H0.z, obs.mean.H1.z, obs.mean.x.neg, obs.mean.x.pos,
obs.mean.z.pos, standard, standard.error, standard.normal
Author(s)
Richard M. Heiberger <rmh@temple.edu>
Examples
normal.and.t.dist()
normal.and.t.dist(xmin=-4)
normal.and.t.dist(std.dev=2)
normal.and.t.dist(std.dev=2, Use.alpha.left=TRUE, deg.free=6)
normal.and.t.dist(std.dev=2, Use.alpha.left=TRUE, deg.free=6, gxbar.max=.20)
normal.and.t.dist(std.dev=2, Use.alpha.left=TRUE, deg.free=6,
gxbar.max=.20, polygon.density=10)
normal.and.t.dist(std.dev=2, Use.alpha.left=FALSE, deg.free=6,
gxbar.max=.20, polygon.density=10,
mu.H1=2, Use.mu.H1=TRUE,
obs.mean=2.5, Use.obs.mean=TRUE, xmin=-7)
normal.and.t.dist(std.dev=2, hypoth.or.conf="Conf")
normal.and.t.dist(std.dev=2, hypoth.or.conf="Conf", deg.free=8)
old.par <- par(oma=c(4,0,2,5), mar=c(7,7,4,2)+.1)
norm.setup()
norm.curve()
norm.setup(xlim=c(75,125), mean=100, se=5)
norm.curve(100, 5, 100+5*(1.645))
norm.observed(112, (112-100)/5)
norm.outline("dnorm", 112, par()$usr[2], 100, 5)
norm.setup(xlim=c(75,125), mean=100, se=5)
norm.curve(100, 5, 100+5*(-1.645), shade="left")
norm.setup(xlim=c(75,125), mean=100, se=5)
norm.curve(mean=100, se=5, col='red')
norm.setup(xlim=c(75,125), mean=100, se=5)
norm.curve(100, 5, 100+5*c(-1.96, 1.96))
norm.setup(xlim=c(-3, 6))
norm.curve(critical.values=1.645, mean=1.645+1.281552, col='green',
shade="left", axis.name="z1")
norm.curve(critical.values=1.645, col='red')
norm.setup(xlim=c(-6, 12), se=2)
norm.curve(critical.values=2*1.645, se=2, mean=2*(1.645+1.281552),
col='green', shade="left", axis.name="z1")
norm.curve(critical.values=2*1.645, se=2, mean=0,
col='red', shade="right")
par(mfrow=c(2,1))
norm.setup()
norm.curve()
mtext("norm.setup(); norm.curve()", side=1, line=5)
norm.setup(n=1)
norm.curve(n=1)
mtext("norm.setup(n=1); norm.curve(n=1)", side=1, line=5)
par(mfrow=c(1,1))
par(mfrow=c(2,2))
## naively scaled,
## areas under the curve are numerically the same but visually different
norm.setup(n=1)
norm.curve(n=1)
norm.observed(1.2, 1.2/(1/sqrt(1)))
norm.setup(n=2)
norm.curve(n=2)
norm.observed(1.2, 1.2/(1/sqrt(2)))
norm.setup(n=4)
norm.curve(n=4)
norm.observed(1.2, 1.2/(1/sqrt(4)))
norm.setup(n=10)
norm.curve(n=10)
norm.observed(1.2, 1.2/(1/sqrt(10)))
mtext("areas under the curve are numerically the same but visually different",
side=3, outer=TRUE)
## scaled so all areas under the curve are numerically and visually the same
norm.setup(n=1, ylim=c(0,1.3))
norm.curve(n=1)
norm.observed(1.2, 1.2/(1/sqrt(1)))
norm.setup(n=2, ylim=c(0,1.3))
norm.curve(n=2)
norm.observed(1.2, 1.2/(1/sqrt(2)))
norm.setup(n=4, ylim=c(0,1.3))
norm.curve(n=4)
norm.observed(1.2, 1.2/(1/sqrt(4)))
norm.setup(n=10, ylim=c(0,1.3))
norm.curve(n=10)
norm.observed(1.2, 1.2/(1/sqrt(10)))
mtext("all areas under the curve are numerically and visually the same",
side=3, outer=TRUE)
par(mfrow=c(1,1))
## t distribution
mu.H0 <- 16
se.val <- .4
df.val <- 10
crit.val <- mu.H0 - qt(.95, df.val) * se.val
mu.alt <- 15
obs.mean <- 14.8
alt.t <- (mu.alt - crit.val) / se.val
norm.setup(xlim=c(12, 19), se=se.val, df.t=df.val)
norm.curve(critical.values=crit.val, se=se.val, df.t=df.val, mean=mu.alt,
col='green', shade="left", axis.name="t1")
norm.curve(critical.values=crit.val, se=se.val, df.t=df.val, mean=mu.H0,
col='gray', shade="right")
norm.observed(obs.mean, (obs.mean-mu.H0)/se.val)
## normal
norm.setup(xlim=c(12, 19), se=se.val)
norm.curve(critical.values=crit.val, se=se.val, mean=mu.alt,
col='green', shade="left", axis.name="z1")
norm.curve(critical.values=crit.val, se=se.val, mean=mu.H0,
col='gray', shade="right")
norm.observed(obs.mean, (obs.mean-mu.H0)/se.val)
## normal and t
norm.setup(xlim=c(12, 19), se=se.val, main="t(6) and normal")
norm.curve(critical.values=15.5, se=se.val, mean=16.3,
col='gray', shade="right")
norm.curve(critical.values=15.5, se.val, df.t=6, mean=14.7,
col='green', shade="left", axis.name="t1", second.axis.label.line=4)
norm.curve(critical.values=15.5, se=se.val, mean=16.3,
col='gray', shade="none")
norm.setup(xlim=c(12, 19), se=se.val, main="t(6) and normal")
norm.curve(critical.values=15.5, se=se.val, mean=15.5,
col='gray', shade="right")
norm.curve(critical.values=15.5, se=se.val, df.t=6, mean=15.5,
col='green', shade="left", axis.name="t1", second.axis.label.line=4)
norm.curve(critical.values=15.5, se=se.val, mean=15.5,
col='gray', shade="none")
par(old.par)