mmc {HH} | R Documentation |
MMC (Mean–mean Multiple Comparisons) plots.
Description
Constructs a "mmc.multicomp"
object from the formula and
other arguments. The constructed object must be explicitly plotted
with the mmcplot
function.
Usage
mmc(model, ...) ## R
## S3 method for class 'glht'
mmc(model, ...)
## Default S3 method:
mmc(model, ## lm object
linfct=NULL,
focus=
if (is.null(linfct))
{
if (length(model$contrasts)==1) names(model$contrasts)
else stop("focus or linfct must be specified.")
}
else
{
if (is.null(names(linfct)))
stop("focus must be specified.")
else names(linfct)
},
focus.lmat,
ylabel=deparse(terms(model)[[2]]),
lmat=if (missing(focus.lmat)) {
t(linfct)
} else {
lmatContrast(t(none.glht$linfct), focus.lmat)
},
lmat.rows=lmatRows(model, focus),
lmat.scale.abs2=TRUE,
estimate.sign=1,
order.contrasts=TRUE,
level=.95,
calpha=NULL,
alternative = c("two.sided", "less", "greater"),
...
)
multicomp.mmc(x, ## S-Plus
focus=dimnames(attr(x$terms,"factors"))[[2]][1],
comparisons="mca",
lmat,
lmat.rows=lmatRows(x, focus),
lmat.scale.abs2=TRUE,
ry,
plot=TRUE,
crit.point,
iso.name=TRUE,
estimate.sign=1,
x.offset=0,
order.contrasts=TRUE,
main,
main2,
focus.lmat,
...)
## S3 method for class 'mmc.multicomp'
x[..., drop = TRUE]
Arguments
model |
|
ylabel |
name of the response variable. |
lmat |
contrast matrix as in the S-Plus |
lmat.rows |
rows in |
focus |
define the factor to compute contrasts of.
In R this argument often can be used to simplify the call.
The statement |
focus.lmat |
R only. Contrast matrix used in the user-specified
comparisons of the |
linfct |
In R, see
|
... |
other arguments. |
comparisons |
argument to |
lmat.scale.abs2 |
logical, scale the contrasts in the columns of
|
estimate.sign |
numeric. If |
order.contrasts |
sort the contrasts in the ( |
alternative |
Direction of alternative hypothesis.
See
in R. S-Plus |
level |
Confidence level. Defaults to 0.95. |
crit.point , calpha |
critical value for the tests. The value from the
specified |
plot |
logical, display the plot if |
ry , iso.name , x.offset , main , main2 |
arguments to
|
x , drop |
See |
Details
By default, if lmat
is not specified, we plot the isomeans grid
and the pairwise comparisons for the focus
factor. By default,
we plot the specified contrasts if the lmat
is specified.
Each contrast is plotted at a height which is the weighted average of
the means being compared. The weights are scaled to the sum of their
absolute values equals 2.
We get the right contrasts automatically if the aov is oneway. If we specify an lmat for oneway it must have a leading row of 0.
For any more complex design, we must study the lmat
from the mca
component of the result to see how to construct the lmat
(with the
extra rows as needed) and how to specify the lmat.rows
corresponding to the rows for the focus factor.
mmc
in R works from either an "glht"
object or an
"aov"
object. multicomp.mmc
in S-Plus works from an
"aov"
object.
Value
An "mmc.multicomp"
object contains either the first two or all
three of the "multicomp"
components mca
, none
,
lmat
described here. Each "multicomp"
component in
R also contains a "glht"
object.
mca |
Object containing the pairwise comparisons. |
none |
Object comparing each mean to 0. |
lmat |
Object for the contrasts specified in
the |
"[.mmc.multicomp"
is a subscript method.
Note
The multiple comparisons calculations in R and S-Plus use
completely different functions.
MMC plots in R are constructed by mmc
based on
glht
.
MMC plots in S-Plus are constructed by
multicomp.mmc
based on the S-Plus
multicomp
.
The MMC plot is the same in both systems. The details of getting the plot differ.
Function mmc
calls
glht
and confint.glht
.
With a large number of levels
for the focus factor, the confint
function is exceedingly slow
(80 minutes for 30 levels on 1.5GHz Windows XP). Therefore,
always specify calpha
to reduce the time to under a second for
the same example.
There are two plotting functions for MMC plots. mmcplot
, the
newer lattice-based function, is recommended. mmcplot
,
chooses better default values for it arguments and is better coordinated
with the tiebreaker plot.
The older
plot.mmc.multicomp
, built on base graphics, chooses sensible defaults for its many
arguments, but they still often need manual adjustment. The examples show
several types of adjustments. We have changed the centering and scaling
to avoid overprinting of label information. By default the significant
contrasts are shown in a more intense color than the nonsignificant
contrasts.
We have an option to reduce the color intensity of the isomeans grid.
Author(s)
Richard M. Heiberger <rmh@temple.edu>
References
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://link.springer.com/book/10.1007/978-1-4939-2122-5
Heiberger, Richard M. and Holland, Burt (2006). "Mean–mean multiple comparison displays for families of linear contrasts." Journal of Computational and Graphical Statistics, 15:937–955.
Hsu, J. and Peruggia, M. (1994). "Graphical representations of Tukey's multiple comparison method." Journal of Computational and Graphical Statistics, 3:143–161.
See Also
mmcplot
, plot.mmc.multicomp
, as.multicomp
Examples
## Use mmc with R.
## Use multicomp.mmc with S-Plus.
## data and ANOVA
## catalystm example
data(catalystm)
bwplot(concent ~ catalyst, data=catalystm,
scales=list(cex=1.5),
ylab=list("concentration", cex=1.5),
xlab=list("catalyst",cex=1.5))
catalystm1.aov <- aov(concent ~ catalyst, data=catalystm)
summary(catalystm1.aov)
catalystm.mca <-
glht(catalystm1.aov, linfct = mcp(catalyst = "Tukey"))
confint(catalystm.mca)
plot(catalystm.mca) ## multcomp plot
mmcplot(catalystm.mca, focus="catalyst") ## HH plot
## pairwise comparisons
catalystm.mmc <-
mmc(catalystm1.aov, focus="catalyst")
catalystm.mmc
## Not run:
## these three statements are identical for a one-way aov
mmc(catalystm1.aov) ## simplest
mmc(catalystm1.aov, focus="catalyst") ## generalizes to higher-order designs
mmc(catalystm1.aov, linfct = mcp(catalyst = "Tukey")) ## glht arguments
## End(Not run)
mmcplot(catalystm.mmc, style="both")
## User-Specified Contrasts
## Row names must include all levels of the factor.
## Column names are the names the user assigns to the contrasts.
## Each column must sum to zero.
catalystm.lmat <- cbind("AB-D" =c( 1, 1, 0,-2),
"A-B" =c( 1,-1, 0, 0),
"ABD-C"=c( 1, 1,-3, 1))
dimnames(catalystm.lmat)[[1]] <- levels(catalystm$catalyst)
catalystm.lmat
catalystm.mmc <-
mmc(catalystm1.aov,
linfct = mcp(catalyst = "Tukey"),
focus.lmat=catalystm.lmat)
catalystm.mmc
mmcplot(catalystm.mmc, style="both", type="lmat")
## Not run:
## Dunnett's test
## weightloss example
data(weightloss)
bwplot(loss ~ group, data=weightloss,
scales=list(cex=1.5),
ylab=list("Weight Loss", cex=1.5),
xlab=list("group",cex=1.5))
weightloss.aov <- aov(loss ~ group, data=weightloss)
summary(weightloss.aov)
group.count <- table(weightloss$group)
tmp.dunnett <-
glht(weightloss.aov,
linfct=mcp(group=contrMat(group.count, base=4)),
alternative="greater")
mmcplot(tmp.dunnett, main="contrasts in alphabetical order", focus="group")
tmp.dunnett.mmc <-
mmc(weightloss.aov,
linfct=mcp(group=contrMat(group.count, base=4)),
alternative="greater")
mmcplot(tmp.dunnett.mmc,
main="contrasts ordered by average value of the means\nof the two levels in the contrasts")
tmp.dunnett.mmc
## End(Not run)
## Not run:
## two-way ANOVA
## display example
data(display)
interaction2wt(time ~ emergenc * panel.ordered, data=display)
displayf.aov <- aov(time ~ emergenc * panel, data=display)
anova(displayf.aov)
## multiple comparisons
## MMC plot
displayf.mmc <- mmc(displayf.aov, focus="panel")
displayf.mmc
## same thing using glht argument list
displayf.mmc <-
mmc(displayf.aov,
linfct=mcp(panel="Tukey", `interaction_average`=TRUE, `covariate_average`=TRUE))
mmcplot(displayf.mmc)
panel.lmat <- cbind("3-12"=c(-1,-1,2),
"1-2"=c( 1,-1,0))
dimnames(panel.lmat)[[1]] <- levels(display$panel)
panel.lmat
displayf.mmc <-
mmc(displayf.aov, focus="panel", focus.lmat=panel.lmat)
## same thing using glht argument list
displayf.mmc <-
mmc(displayf.aov,
linfct=mcp(panel="Tukey", `interaction_average`=TRUE, `covariate_average`=TRUE),
focus.lmat=panel.lmat)
mmcplot(displayf.mmc, type="lmat")
## End(Not run)
## Not run:
## split plot design with tiebreaker plot
##
## This example is based on the query by Tomas Goicoa to R-news
## http://article.gmane.org/gmane.comp.lang.r.general/76275/match=goicoa
## It is a split plot similar to the one in HH Section 14.2 based on
## Yates 1937 example. I am using the Goicoa example here because its
## MMC plot requires a tiebreaker plot.
data(maiz)
interaction2wt(yield ~ hibrido+nitrogeno+bloque, data=maiz,
par.strip.text=list(cex=.7))
interaction2wt(yield ~ hibrido+nitrogeno, data=maiz)
maiz.aov <- aov(yield ~ nitrogeno*hibrido + Error(bloque/nitrogeno), data=maiz)
summary(maiz.aov)
summary(maiz.aov,
split=list(hibrido=list(P3732=1, Mol17=2, A632=3, LH74=4)))
try(glht(maiz.aov, linfct=mcp(hibrido="Tukey"))) ## can't use 'aovlist' objects in glht
## R glht() requires aov, not aovlist
maiz2.aov <- aov(terms(yield ~ bloque*nitrogeno + hibrido/nitrogeno,
keep.order=TRUE),
data=maiz)
summary(maiz2.aov)
## There are many ties in the group means.
## These are easily seen in the MMC plot, where the two clusters
## c("P3747", "P3732", "LH74") and c("Mol17", "A632")
## are evident from the top three contrasts including zero and the
## bottom contrast including zero. The significant contrasts are the
## ones comparing hybrids in the top group of three to ones in the
## bottom group of two.
## We have two graphical responses to the ties.
## 1. We constructed the tiebreaker plot.
## 2. We construct a set of orthogonal contrasts to illustrate
## the clusters.
## pairwise contrasts with tiebreakers.
maiz2.mmc <- mmc(maiz2.aov,
linfct=mcp(hibrido="Tukey", interaction_average=TRUE))
mmcplot(maiz2.mmc, style="both") ## MMC and Tiebreaker
## orthogonal contrasts
## user-specified contrasts
hibrido.lmat <- cbind("PPL-MA" =c(2, 2,-3,-3, 2),
"PP-L" =c(1, 1, 0, 0,-2),
"P47-P32"=c(1,-1, 0, 0, 0),
"M-A" =c(0, 0, 1,-1, 0))
dimnames(hibrido.lmat)[[1]] <- levels(maiz$hibrido)
hibrido.lmat
maiz2.mmc <-
mmc(maiz2.aov, focus="hibrido", focus.lmat=hibrido.lmat)
maiz2.mmc
## same thing using glht argument list
maiz2.mmc <-
mmc(maiz2.aov, linfct=mcp(hibrido="Tukey",
`interaction_average`=TRUE), focus.lmat=hibrido.lmat)
mmcplot(maiz2.mmc, style="both", type="lmat")
## End(Not run)