ancovaplot {HH} | R Documentation |
Analysis of Covariance Plots
Description
Analysis of Covariance Plots. Any of the ancova models
y ~ x * t
y ~ t * x
y ~ x + t
y ~ t + x
y ~ x , groups=t
y ~ t, x=x
y ~ x * t, groups=b
y ~ t * x, groups=b
y ~ x + t, groups=b
y ~ t + x, groups=b
Usage
ancovaplot(object, ...)
## S3 method for class 'formula'
ancovaplot(object, data, groups=NULL, x=NULL, ...,
formula=object,
col=rep(tpg$col,
length=length(levels(as.factor(groups)))),
pch=rep(c(15,19,17,18,16,20, 0:14),
length=length(levels(as.factor(groups)))),
slope, intercept,
layout=c(length(levels(cc)), 1),
col.line=col, lty=1,
superpose.panel=TRUE,
between=if (superpose.panel)
list(x=c(rep(0, length(levels(cc))-1), 1))
else
list(x=0),
col.by.groups=FALSE ## ignored unless groups= is specified
)
panel.ancova.superpose(x, y, subscripts, groups,
slope, intercept,
col, pch, ...,
col.line, lty,
superpose.panel,
col.by.groups,
condition.factor,
groups.cc.incompatible,
plot.resids=FALSE,
print.resids=FALSE,
mean.x.line=FALSE,
col.mean.x.line="gray80")
Arguments
formula , object |
|
data |
|
groups |
If the treatment factor is included in the |
x |
Covariate. Required by For |
... |
Other arguments to be passed to |
col , pch |
Standard lattice arguments. |
slope , intercept |
Vector, the length of the number of treatment levels, containing slope
and intercept of the |
layout , between |
Standard lattice arguments. |
col.line , lty |
Standard lattice arguments. By default, they follow the value of the
treatment factor in the |
y , subscripts |
See |
superpose.panel |
logical. if |
col.by.groups |
logical. See the discussion in argument |
condition.factor , groups.cc.incompatible |
These are both internal variables. |
plot.resids , print.resids , mean.x.line , col.mean.x.line |
logical, logical, logical or numeric, color name.
When |
Details
ancova=aov specification | xyplot specification | abline | |
y ~ x * t | y ~ x | t, groups=t | lm(y[t] ~ x[t]) | ## separate lines |
y ~ t * x | y ~ x | t, groups=t | lm(y[t] ~ x[t]) | ## separate lines |
y ~ x + t | y ~ x | t, groups=t | lm(y ~ x + t) | ## parallel lines |
y ~ t + x | y ~ x | t, groups=t | lm(y ~ x + t) | ## parallel lines |
y ~ x , groups=t | y ~ x | t, groups=t | lm(y ~ x) | ## single regression line |
y ~ t, x=x | y ~ x | t, groups=t | mean(t) | ## separate horizontal lines |
y ~ x * t, groups=b | y ~ x | t, groups=b | lm(y[t] ~ x[t]) | ## sep lines, pch&col follow b |
y ~ t * x, groups=b | y ~ x | t, groups=b | lm(y[t] ~ x[t]) | ## sep lines, pch&col follow b |
y ~ x + t, groups=b | y ~ x | t, groups=b | lm(y ~ x + t) | ## par lines, pch&col follow b |
y ~ t + x, groups=b | y ~ x | t, groups=b | lm(y ~ x + t) | ## par lines, pch&col follow b
|
Value
ancovaplot
returns a c("ancova","trellis")
object.
panel.ancova.superpose
is an ordinary lattice panel
function.
Author(s)
Richard M. Heiberger <rmh@temple.edu>
References
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://link.springer.com/book/10.1007/978-1-4939-2122-5
See Also
See the older ancova
.
Examples
data(hotdog, package="HH")
ancovaplot(Sodium ~ Calories + Type, data=hotdog)
ancovaplot(Sodium ~ Calories * Type, data=hotdog)
ancovaplot(Sodium ~ Calories, groups=Type, data=hotdog)
ancovaplot(Sodium ~ Type, x=Calories, data=hotdog)
## Please see demo("ancova", package="HH") to coordinate placement
## of all four of these plots on the same page.
ancovaplot(Sodium ~ Calories + Type, data=hotdog, plot.resids=TRUE)