Hierarchical Ensemble Methods for Directed Acyclic Graphs


[Up] [Top]

Documentation for package ‘HEMDAG’ version 2.7.4

Help Pages

HEMDAG-package HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic Graphs
adj.upper.tri Binary upper triangular adjacency matrix
auprc AUPRC measures
auprc.single.class AUPRC measures
auprc.single.over.classes AUPRC measures
auroc AUROC measures
auroc.single.class AUROC measures
auroc.single.over.classes AUROC measures
build.ancestors Build ancestors
build.ancestors.bottom.up Build ancestors
build.ancestors.per.level Build ancestors
build.children Build children
build.children.bottom.up Build children
build.children.top.down Build children
build.consistent.graph Build consistent graph
build.descendants Build descendants
build.descendants.bottom.up Build descendants
build.descendants.per.level Build descendants
build.edges.from.hpo.obo Parse an HPO obo file
build.parents Build parents
build.parents.bottom.up Build parents
build.parents.top.down Build parents
build.parents.topological.sorting Build parents
build.scores.matrix Build scores matrix
build.scores.matrix.from.list Build scores matrix
build.scores.matrix.from.tupla Build scores matrix
build.subgraph Build subgraph
build.submatrix Build submatrix
check.annotation.matrix.integrity Annotation matrix checker
check.dag.integrity DAG checker
check.hierarchy Hierarchical constraints checker
check.hierarchy.single.sample Hierarchical constraints checker
compute.flipped.graph Flip graph
compute.fmax Compute Fmax
constraints.matrix Constraints matrix
create.stratified.fold.df DataFrame for stratified cross validation
distances.from.leaves Distances from leaves
example.datasets Small real example datasets
F.measure.multilabel multilabel F-measure
F.measure.multilabel-method multilabel F-measure
find.best.f Best hierarchical F-score
find.leaves Leaves
fmax Compute Fmax
full.annotation.matrix Full annotation matrix
g Small real example datasets
gpav Generalized Pool-Adjacent Violators (GPAV)
gpav.holdout GPAV holdout
gpav.over.examples GPAV over examples
gpav.parallel GPAV over examples - parallel implementation
gpav.vanilla GPAV vanilla
graph.levels Build graph levels
HEMDAG HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic Graphs
hierarchical.checkers Hierarchical constraints checker
htd HTD-DAG
htd.holdout HTD-DAG holdout
htd.vanilla HTD-DAG vanilla
L Small real example datasets
lexicographical.topological.sort Lexicographical topological sorting
multilabel.F.measure multilabel F-measure
normalize.max Max normalization
obozinski.and Obozinski heuristic methods
obozinski.heuristic.methods Obozinski heuristic methods
obozinski.holdout Obozinski's heuristic methods - holdout
obozinski.max Obozinski heuristic methods
obozinski.methods Obozinski's heuristic methods calling
obozinski.or Obozinski heuristic methods
precision.at.all.recall.levels.single.class Precision-Recall curves
precision.at.given.recall.levels.over.classes Precision-Recall curves
pxr Precision-Recall curves
read.graph Read a directed graph from a file
read.undirected.graph Read an undirected graph from a file
root.node Root node
S Small real example datasets
scores.normalization Scores normalization function
specific.annotation.list Specific annotations list
specific.annotation.matrix Specific annotation matrix
stratified.cross.validation Stratified cross validation
stratified.cv.data.over.classes Stratified cross validation
stratified.cv.data.single.class Stratified cross validation
test.index Small real example datasets
tpr.dag TPR-DAG ensemble variants
tpr.dag.cv TPR-DAG cross-validation experiments
tpr.dag.holdout TPR-DAG holdout experiments
transitive.closure.annotations Transitive closure of annotations
tupla.matrix Tupla matrix
unstratified.cv.data Unstratified cross validation
W Small real example datasets
weighted.adjacency.matrix Weighted adjacency matrix
write.graph Write a directed graph on file