dspheremix {HDiR} | R Documentation |
Density functions for mixtures of spherical von Mises-Fisher
Description
Density functions for nine finite mixtures of spherical von Mises-Fisher allowing different numbers of modes.
Usage
dspheremix(x, model = NULL)
Arguments
x |
A matrix whose rows represent points on the unit sphere in Cartesian coordinates. If a row norm is different from one, a message appears indicating that they must be standardized. |
model |
Number between 1 and 9, corresponding to a density model defined in Saavedra-Nieves and Crujeiras (2021). See Details. |
Details
These nine spherical models are obtained as mixtures of von Mises distributions where the density f
is given by:
f=\sum_{i=1}^I w_i K_{vM}(x;m_i;k_i), w_i\geq 0;\sum_{i=1}^I w_i=1
with K_vM
denoting the von Mises-Fisher kernel density; m_i
, k_i
and w_i
the mean, concentration and weight corresponding to each component. More details can be found in Hornik and Grun (2014) and Wood (1994). The combination of means, concentration parameters and the weights of spherical models from Saavedra-Nieves and Crujeiras (2021) are specified below:
S1: (0, 0, 1) (m
); 10 (k
); 1 (w
).
S2: (0, 0, 1), (0, 0, -1) (m
); 1, 1 (k
); 1/2, 1/2 (w
).
S3: (0, 0, 1), (0, 0, -1) (m
); 10, 1 (k
); 1/2, 1/2 (w
).
S4: (0, 0, 1); (0, 1/\sqrt2
, 1/\sqrt2
) (m
); 10, 10 (k
); 1/2, 1/2 (w
).
S5: (0, 0, 1); (0, 1/\sqrt2
, 1/\sqrt2
) (m
); 10, 10 (k
); 2/5, 3/5 (w
).
S6: (0, 0, 1); (0, 1/\sqrt2
, 1/\sqrt2
) (m
); 10, 5 (k
); 1/5, 4/5 (w
).
S7: (0, 0, 1), (0, 1, 0), (1, 0, 0) (m
); 5, 5, 5 (k
); 1/3, 1/3, 1/3 (w
).
S8: (0, 0, 1), (0, 1, 0), (1, 0, 0) (m
); 5, 5, 5 (k
); 2/3, 1/6, 1/6 (w
).
S9: (0, 0, 1); (0, 1/\sqrt 2
, 1/\sqrt 2
), (0, 1, 0) (m
); 10, 10, 10 (k
); 1/3, 1/3, 1/3 (w
).
Value
A numeric vector of density evaluated on x
.
Author(s)
Paula Saavedra-Nieves and Rosa M. Crujeiras.
References
Hornik, K. and Grun, B. (2014). movMF: an R package for fitting mixtures of von Mises-Fisher distributions. Journal of Statistical Software, 58(10), 1-31.
Saavedra-Nieves, P. and Crujeiras, R. M. (2021). Nonparametric estimation of directional highest density regions. Advances in Data Analysis and Classification, 1-36.
Wood, A. T. (1994). Simulation of the von Mises Fisher distribution. Communications in Statistics-Simulation and Computation, 23(1), 157-164.
Examples
# Density function evaluation from model S1
data <- rbind(c(1,0,0),c(0,1,0),c(0,0,1))
dspheremix(data, model=1)