| simuldata {HDclassif} | R Documentation | 
Gaussian Data Generation
Description
This function generates two datasets according to the model [AkBkQkDk] of the HDDA gaussian mixture model paramatrisation (see ref.).
Usage
simuldata(nlearn, ntest, p, K = 3, prop = NULL, d = NULL, a = NULL, b = NULL)
Arguments
| nlearn | The size of the learning dataset to be generated. | 
| ntest | The size of the testing dataset to be generated. | 
| p | The number of variables. | 
| K | The number of classes. | 
| prop | The proportion of each class. | 
| d | The dimension of the intrinsic subspace of each class. | 
| a | The value of the main parameter of each class. | 
| b | The noise of each class. | 
Value
| X | The learning dataset. | 
| clx | The class vector of the learning dataset. | 
| Y | The test dataset. | 
| cly | The class vector of the test dataset. | 
| prms | The principal parameters used to generate the datasets. | 
Author(s)
Laurent Berge, Charles Bouveyron and Stephane Girard
References
Bouveyron, C. Girard, S. and Schmid, C. (2007) “High Dimensional Discriminant Analysis”, Communications in Statistics : Theory and Methods, vol. 36(14), pp. 2607–2623
See Also
Examples
data <- simuldata(500, 1000, 50, K=5, prop=c(0.2,0.25,0.25,0.15,0.15))
X <- data$X
clx <- data$clx
f <- hdda(X, clx)
Y <- data$Y
cly <- data$cly
e <- predict(f, Y, cly)