simuldata {HDclassif} | R Documentation |
Gaussian Data Generation
Description
This function generates two datasets according to the model [AkBkQkDk] of the HDDA gaussian mixture model paramatrisation (see ref.).
Usage
simuldata(nlearn, ntest, p, K = 3, prop = NULL, d = NULL, a = NULL, b = NULL)
Arguments
nlearn |
The size of the learning dataset to be generated. |
ntest |
The size of the testing dataset to be generated. |
p |
The number of variables. |
K |
The number of classes. |
prop |
The proportion of each class. |
d |
The dimension of the intrinsic subspace of each class. |
a |
The value of the main parameter of each class. |
b |
The noise of each class. |
Value
X |
The learning dataset. |
clx |
The class vector of the learning dataset. |
Y |
The test dataset. |
cly |
The class vector of the test dataset. |
prms |
The principal parameters used to generate the datasets. |
Author(s)
Laurent Berge, Charles Bouveyron and Stephane Girard
References
Bouveyron, C. Girard, S. and Schmid, C. (2007) “High Dimensional Discriminant Analysis”, Communications in Statistics : Theory and Methods, vol. 36(14), pp. 2607–2623
See Also
Examples
data <- simuldata(500, 1000, 50, K=5, prop=c(0.2,0.25,0.25,0.15,0.15))
X <- data$X
clx <- data$clx
f <- hdda(X, clx)
Y <- data$Y
cly <- data$cly
e <- predict(f, Y, cly)