SpecTest {HDTSA} | R Documentation |
Statistical inference for high-dimensional spectral density matrix
Description
SpecTest()
implements a new global test proposed in
Chang, Jiang, McElroy and Shao (2023) for the following hypothesis testing problem:
H_0:f_{i,j}(\omega)=0 \mathrm{\ for\ any\ }(i,j)\in\mathcal{I}\mathrm{\ and\ }
\omega \in \mathcal{J}\mathrm{\ \ versus\ \ H_1:H_0\ is\ not\ true.}
Usage
SpecTest(X, J.set, cross.indices, B = 1000, flag_c = 0.8)
Arguments
X |
|
J.set |
Set |
cross.indices |
Set |
B |
Bootstrap times for generating multivariate normal distributed
random vectors in calculating the critical value. Default is |
flag_c |
Bandwidth |
Value
An object of class "hdtstest" is a list containing the following components:
Stat |
Numerical value which represents the value of test statistic. |
pval |
Numerical value which represents the p-value of the test. |
cri95 |
Numerical value which represents the critical value of the test at the significance level 0.05. |
method |
A character string indicating what method was performed. |
References
Chang, J., Jiang, Q., McElroy, T. & Shao, X. (2023). Statistical inference for high-dimensional spectral density matrix.
Examples
n <- 200
p <- 10
flag_c <- 0.8
B <- 1000
burn <- 1000
z.sim <- matrix(rnorm((n+burn)*p),p,n+burn)
phi.mat <- 0.4*diag(p)
x.sim <- phi.mat %*% z.sim[,(burn+1):(burn+n)]
x <- x.sim - rowMeans(x.sim)
cross.indices <- matrix(c(1,2), ncol=2)
J.set <- 2*pi*seq(0,3)/4 - pi
res <- SpecTest(t(x), J.set, cross.indices, B, flag_c)
Stat <- res$Stat
Pvalue <- res$p.value
CriVal <- res$cri95