DGP.CP {HDTSA} | R Documentation |
Data generate process of matrix CP-factor model
Description
DGP.CP()
function generate the matrix time series described in Chang et al. (2023):
Yt=AXtB′+ϵt,
where Xt=diag(xt,1,…,xt,d)
is an d×d
latent process, A
and B
are , respectively, p×d
and q×d
unknown constant matrix, and ϵt
is a p×q
matrix white noise process.
Usage
DGP.CP(n, p, q, d1, d2, d)
Arguments
n |
Integer. Sample size of Yt , t=1,…,n .
|
p |
Integer. Number of rows of Yt .
|
q |
Integer. Number of columns of Yt .
|
d1 |
Integer. Rank of A .
|
d2 |
Integer. Rank of B .
|
d |
Integer. Number of columns of A and B .
|
Value
A list containing the following
components:
Y |
A n×p×q data array of Yt .
|
S |
A n×p×q data array of St=AXtB′ .
|
A |
A p×d coefficient matrix.
|
B |
A q×d coefficient matrix.
|
X |
A n×d×d data array of Xt .
|
P |
A p×d1 orthogonal matrix such that A=PU .
|
Q |
A q×d2 orthogonal matrix such that B=QV .
|
U |
A d1×d matrix such that A=PU .
|
V |
A d2×d matrix such that B=QV .
|
W |
A d1d2×d matrix such that W=(v1⊗u1,…,vd⊗ud) .
|
Ws |
A d1d2×d matrix. An orthogonal basis of W .
|
Xmat |
A n×d data matrix of diag(Xt) .
|
Smat |
A n×pq data matrix of vec(St) .
|
References
Chang, J., He, J., Yang, L. and Yao, Q.(2023). Modelling matrix time series via a tensor CP-decomposition.
Journal of the Royal Statistical Society Series B: Statistical Methodology, Vol. 85(1), pp.127–148.
See Also
CP_MTS
.
Examples
p = 10
q = 10
n = 400
d = d1 = d2 = 3
data <- DGP.CP(n,p,q,d,d1,d2)
Y = data$Y
[Package
HDTSA version 1.0.3
Index]