CP_MTS {HDTSA}R Documentation

Estimation of matrix CP-factor model

Description

CP_MTS() deals with CP-decomposition for high-dimensional matrix time series proposed in Chang et al. (2023):

Yt=AXtB+ϵt,{\bf{Y}}_t = {\bf A \bf X}_t{\bf B}^{'} + {\boldsymbol{\epsilon}}_t,

where Xt=diag(xt,1,,xt,d){\bf X}_t = diag(x_{t,1},\ldots,x_{t,d}) is an d×dd \times d latent process, A{\bf A} and B{\bf B} are , respectively, p×dp \times d and q×dq \times d unknown constant matrix, and ϵt {\boldsymbol{\epsilon}}_t is a p×qp \times q matrix white noise process. This function aims to estimate the rank dd and the coefficient matrices A{\bf A} and B{\bf B}.

Usage

CP_MTS(
  Y,
  xi = NULL,
  Rank = NULL,
  lag.k = 15,
  lag.ktilde = 10,
  method = c("CP.Direct", "CP.Refined", "CP.Unified")
)

Arguments

Y

A n×p×qn \times p \times q data array, where nn is the sample size and (p,q)(p,q) is the dimension of Yt{\bf Y}_t.

xi

A n×1n \times 1 vector. If NULL (the default), then a PCA-based ξt\xi_{t} is used [See Section 5.1 in Chang et al. (2023)] to calculate the sample auto-covariance matrix Σ^Y,ξ(k)\widehat{\bf \Sigma}_{\bf Y, \xi}(k).

Rank

A list of the rank dd,d1d_1 and d2d_2. Default to NULL.

lag.k

Integer. Time lag KK is only used in CP.Refined and CP.Unified to calculate the nonnegative definte matrices M^1\widehat{\mathbf{M}}_1 and M^2\widehat{\mathbf{M}}_2:

M^1 = k=1KΣ^Y,ξ(k)Σ^Y,ξ(k),\widehat{\mathbf{M}}_1\ =\ \sum_{k=1}^{K}\widehat{\mathbf{\Sigma}}_{\bf Y, \xi}(k)\widehat{\mathbf{\Sigma}}_{\bf Y, \xi}(k)',

,

M^2 = k=1KΣ^Y,ξ(k)Σ^Y,ξ(k),\widehat{\mathbf{M}}_2\ =\ \sum_{k=1}^{K}\widehat{\mathbf{\Sigma}}_{\bf Y, \xi}(k)'\widehat{\mathbf{\Sigma}}_{\bf Y, \xi}(k),

where Σ^Y,ξ(k)\widehat{\mathbf{\Sigma}}_{\bf Y, \xi}(k) is the sample auto-covariance of Yt {\bf Y}_t and ξt\xi_t at lag kk.

lag.ktilde

Integer. Time lag K~\tilde K is only used in CP.Unified to calulate the nonnegative definte matrix M^\widehat{\mathbf{M}}:

M^ = k=1K~Σ^Z~(k)Σ^Z~(k).\widehat{\mathbf{M}} \ =\ \sum_{k=1}^{\tilde K}\widehat{\mathbf{\Sigma}}_{\tilde{\bf Z}}(k)\widehat{\mathbf{\Sigma}}_{\tilde{\bf Z}}(k)'.

method

Method to use: CP.Direct and CP.Refined, Chang et al.(2023)'s direct and refined estimators; CP.Unified, Chang et al.(2024+)'s unified estimation procedure.

Value

An object of class "mtscp" is a list containing the following components:

A

The estimated p×dp \times d left loading matrix A^\widehat{\bf A}.

B

The estimated q×dq \times d right loading matrix B^\widehat{\bf B}.

f

The estimated latent process (x^1,t,,x^d,t)(\hat{x}_{1,t},\ldots,\hat{x}_{d,t}).

Rank

The estimated rank (d^1,d^2,d^)(\hat{d}_1,\hat{d}_2,\hat{d}) of the matrix CP-factor model.

References

Chang, J., He, J., Yang, L. and Yao, Q.(2023). Modelling matrix time series via a tensor CP-decomposition. Journal of the Royal Statistical Society Series B: Statistical Methodology, Vol. 85(1), pp.127–148.

Chang, J., Du, Y., Huang, G. and Yao, Q.(2024+). On the Identification and Unified Estimation Procedure for the Matrix CP-factor Model, Working paper.

Examples

p = 10
q = 10
n = 400
d = d1 = d2 = 3
data <- DGP.CP(n,p,q,d,d1,d2)
Y = data$Y
res1 <- CP_MTS(Y,method = "CP.Direct")
res2 <- CP_MTS(Y,method = "CP.Refined")
res3 <- CP_MTS(Y,method = "CP.Unified")

[Package HDTSA version 1.0.3 Index]