nonlin_shrinkLW {HDShOP} | R Documentation |
nonlinear shrinkage estimator of the covariance matrix of Ledoit and Wolf (2020)
Description
The nonlinear shrinkage estimator of the covariance matrix, that minimizes the minimum variance loss functions as defined in Eq (2.1) of Ledoit and Wolf (2020).
Usage
nonlin_shrinkLW(x)
Arguments
x |
a p by n matrix or a data frame of asset returns. Rows represent different assets, columns – observations. |
Value
an object of class matrix
References
Ledoit O, Wolf M (2020). “Analytical nonlinear shrinkage of large-dimensional covariance matrices.” Annals of Statistics, 48(5), 3043–3065.
Examples
n<-3e2
c<-0.7
p<-c*n
mu <- rep(0, p)
Sigma <- RandCovMtrx(p=p)
X <- t(MASS::mvrnorm(n=n, mu=mu, Sigma=Sigma))
Sigma_shr <- nonlin_shrinkLW(X)
[Package HDShOP version 0.1.5 Index]