nonlin_shrinkLW {HDShOP}R Documentation

nonlinear shrinkage estimator of the covariance matrix of Ledoit and Wolf (2020)

Description

The nonlinear shrinkage estimator of the covariance matrix, that minimizes the minimum variance loss functions as defined in Eq (2.1) of Ledoit and Wolf (2020).

Usage

nonlin_shrinkLW(x)

Arguments

x

a p by n matrix or a data frame of asset returns. Rows represent different assets, columns – observations.

Value

an object of class matrix

References

Ledoit O, Wolf M (2020). “Analytical nonlinear shrinkage of large-dimensional covariance matrices.” Annals of Statistics, 48(5), 3043–3065.

Examples

n<-3e2
c<-0.7
p<-c*n
mu <- rep(0, p)
Sigma <- RandCovMtrx(p=p)

X <- t(MASS::mvrnorm(n=n, mu=mu, Sigma=Sigma))
Sigma_shr <- nonlin_shrinkLW(X)

[Package HDShOP version 0.1.5 Index]