InvCovShrinkBGP16 {HDShOP} | R Documentation |
Linear shrinkage estimator of the inverse covariance matrix (Bodnar et al. 2016)
Description
The optimal linear shrinkage estimator of the inverse covariance (precision) matrix that minimizes the Frobenius norm is given by:
\hat{\Pi}_{OLSE} = \hat{\alpha} \hat{\Pi} + \hat{\beta} \Pi_0,
where \hat{\alpha}
and \hat{\beta}
are optimal shrinkage
intensities given in Eq. (4.4) and (4.5) of Bodnar et al. (2016).
\hat{\Pi}
is the inverse of the sample covariance matrix (iSCM) and
\Pi_0
is a positive definite symmetric matrix used as the target
matrix (TM), for example, I.
Usage
InvCovShrinkBGP16(n, p, TM, iSCM)
Arguments
n |
the number of observations |
p |
the number of variables (rows of the covariance matrix) |
TM |
the target matrix for the shrinkage estimator |
iSCM |
the inverse of the sample covariance matrix |
Value
a list containing an object of class matrix (S) and the estimated
shrinkage intensities \hat{\alpha}
and \hat{\beta}
.
References
Bodnar T, Gupta AK, Parolya N (2016). “Direct shrinkage estimation of large dimensional precision matrix.” Journal of Multivariate Analysis, 146, 223–236.
Examples
# Parameter setting
n <- 3e2
c <- 0.7
p <- c*n
mu <- rep(0, p)
Sigma <- RandCovMtrx(p=p)
# Generating observations
X <- t(MASS::mvrnorm(n=n, mu=mu, Sigma=Sigma))
# Estimation
TM <- matrix(0, nrow=p, ncol=p)
diag(TM) <- 1
iSCM <- solve(Sigma_sample_estimator(X))
Sigma_shr <- InvCovShrinkBGP16(n=n, p=p, TM=TM, iSCM=iSCM)
Sigma_shr$S[1:6, 1:6]