CovShrinkBGP14 {HDShOP} | R Documentation |
Linear shrinkage estimator of the covariance matrix (Bodnar et al. 2014)
Description
The optimal linear shrinkage estimator of the covariance matrix that minimizes the Frobenius norm:
\hat{\Sigma}_{OLSE} = \hat{\alpha} S + \hat{\beta} \Sigma_0,
where \hat{\alpha}
and \hat{\beta}
are optimal shrinkage
intensities given in Eq. (4.3) and (4.4) of
Bodnar et al. (2014). S
is the sample covariance
matrix (SCM, see Sigma_sample_estimator
) and \Sigma_0
is a positive definite symmetric matrix used as the target matrix (TM),
for example, \frac{1}{p} I
.
Usage
CovShrinkBGP14(n, TM, SCM)
Arguments
n |
sample size. |
TM |
the target matrix for the shrinkage estimator. |
SCM |
sample covariance matrix. |
Value
a list containing an object of class matrix (S) and the estimated
shrinkage intensities \hat{\alpha}
and \hat{\beta}
.
References
Bodnar T, Gupta AK, Parolya N (2014). “On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix.” Journal of Multivariate Analysis, 132, 215–228.
Examples
# Parameter setting
n<-3e2
c<-0.7
p<-c*n
mu <- rep(0, p)
Sigma <- RandCovMtrx(p=p)
# Generating observations
X <- t(MASS::mvrnorm(n=n, mu=mu, Sigma=Sigma))
# Estimation
TM <- matrix(0, nrow=p, ncol=p)
diag(TM) <- 1/p
SCM <- Sigma_sample_estimator(X)
Sigma_shr <- CovShrinkBGP14(n=n, TM=TM, SCM=SCM)
Sigma_shr$S[1:6, 1:6]