RTS {HDRFA}R Documentation

Robust Two Step Algorithm for Large-Dimensional Elliptical Factor Models

Description

This function is to fit the large-dimensional elliptical factor models via the Robust Two Step (RTS) algorithm.

Usage

RTS(X, r)

Arguments

X

Input matrix, of dimension T×NT\times N. Each row is an observation with NN features at time point tt.

r

A positive integer indicating the factor numbers.

Details

See He et al. (2022) for details.

Value

The return value is a list. In this list, it contains the following:

Fhat

The estimated factor matrix of dimension T×rT\times r.

Lhat

The estimated loading matrix of dimension N×rN\times r.

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

He, Y., Kong, X., Yu, L., Zhang, X., 2022. Large-dimensional factor analysis without moment constraints. Journal of Business & Economic Statistics 40, 302–312.

Examples

set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E

fit=RTS(X,3)
fit$Fhat;fit$Lhat

[Package HDRFA version 0.1.5 Index]