RTS {HDRFA} | R Documentation |
Robust Two Step Algorithm for Large-Dimensional Elliptical Factor Models
Description
This function is to fit the large-dimensional elliptical factor models via the Robust Two Step (RTS) algorithm.
Usage
RTS(X, r)
Arguments
X |
Input matrix, of dimension |
r |
A positive integer indicating the factor numbers. |
Details
See He et al. (2022) for details.
Value
The return value is a list. In this list, it contains the following:
Fhat |
The estimated factor matrix of dimension |
Lhat |
The estimated loading matrix of dimension |
Author(s)
Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.
References
He, Y., Kong, X., Yu, L., Zhang, X., 2022. Large-dimensional factor analysis without moment constraints. Journal of Business & Economic Statistics 40, 302–312.
Examples
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
fit=RTS(X,3)
fit$Fhat;fit$Lhat
[Package HDRFA version 0.1.5 Index]