PCA {HDRFA}R Documentation

Principal Component Analysis for Large-Dimensional Factor Models

Description

This function is to fit the factor models via Principal Component Analysis (PCA) methods.

Usage

PCA(X, r, constraint = "L")

Arguments

X

Input matrix, of dimension T×NT\times N. Each row is an observation with NN features at time point tt.

r

A positive integer indicating the factor numbers.

constraint

The type of identification condition. If constraint="L", the columns of the estimated loading matrix are orthogonal and constraint="F" indicates the columns of the estimated factor matrix are orthogonal.

Details

See Bai (2003) for details.

Value

The return value is a list. In this list, it contains the following:

Fhat

The estimated factor matrix of dimension T×rT\times r.

Lhat

The estimated loading matrix of dimension N×rN\times r.

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

Bai, J., 2003. Inferential theory for factor models of large dimensions. Econometrica 71, 135–171.

Examples

set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E

fit=PCA(X,3,"L")
t(fit$Lhat)%*%fit$Lhat/N

fit=PCA(X,3,"F")
t(fit$Fhat)%*%fit$Fhat/T

[Package HDRFA version 0.1.5 Index]