glht_sf2006 {HDNRA}R Documentation

Test proposed by Srivastava and Fujikoshi (2006)

Description

Srivastava and Fujikoshi (2006)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data with assuming that underlying covariance matrices are the same.

Usage

glht_sf2006(Y,X,C)

Arguments

Y

An n×pn\times p response matrix obtained by independently observing a pp-dimensional response variable for nn subjects.

X

A known n×kn\times k full-rank design matrix with rank(G)=k<n\operatorname{rank}(\boldsymbol{G})=k<n.

C

A known matrix of size q×kq\times k with rank(C)=q<k\operatorname{rank}(\boldsymbol{C})=q<k.

Details

A high-dimensional linear regression model can be expressed as

Y=XΘ+ϵ,\boldsymbol{Y}=\boldsymbol{X\Theta}+\boldsymbol{\epsilon},

where Θ\Theta is a k×pk\times p unknown parameter matrix and ϵ\boldsymbol{\epsilon} is an n×pn\times p error matrix.

It is of interest to test the following GLHT problem

H0:CΘ=0, vs. H1:CΘ0.H_0: \boldsymbol{C\Theta}=\boldsymbol{0}, \quad \text { vs. } \quad H_1: \boldsymbol{C\Theta} \neq \boldsymbol{0}.

Srivastava and Fujikoshi (2006) proposed the following test statistic:

TSF=[2qa^2(1+(nk)1q)]1/2[tr(B)pqnktr(W)(nk)p].T_{SF}=\left[2q\hat{a}_2(1+(n-k)^{-1}q)\right]^{-1/2}\left[\frac{\operatorname{tr}(\boldsymbol{B})}{\sqrt{p}}-\frac{q}{\sqrt{n-k}}\frac{\operatorname{tr}(\boldsymbol{W})}{\sqrt{(n-k)p}}\right].

where W\boldsymbol{W} and B\boldsymbol{B} are the matrix of sum of squares and products due to error and the error, respectively, and a^2=[tr(W2)tr2(W)/(nk)]/[(nk1)(nk+2)p]\hat{a}_2=[\operatorname{tr}(\boldsymbol{W}^2)-\operatorname{tr}^2(\boldsymbol{W})/(n-k)]/[(n-k-1)(n-k+2)p]. They showed that under the null hypothesis, TSFT_{SF} is asymptotically normally distributed.

Value

A (list) object of S3 class htest containing the following elements:

statistic

the test statistic proposed by Srivastava and Fujikoshi (2006).

p.value

the pp-value of the test proposed by Srivastava and Fujikoshi (2006).

References

Srivastava MS, Fujikoshi Y (2006). “Multivariate analysis of variance with fewer observations than the dimension.” Journal of Multivariate Analysis, 97(9), 1927–1940. doi:10.1016/j.jmva.2005.08.010.

Examples

set.seed(1234)
k <- 3
q <- k-1
p <- 50
n <- c(25,30,40)
rho <- 0.01
Theta <- matrix(rep(0,k*p),nrow=k)
X <- matrix(c(rep(1,n[1]),rep(0,sum(n)),rep(1,n[2]),rep(0,sum(n)),rep(1,n[3])),ncol=k,nrow=sum(n))
y <- (-2*sqrt(1-rho)+sqrt(4*(1-rho)+4*p*rho))/(2*p)
x <- y+sqrt((1-rho))
Gamma <- matrix(rep(y,p*p),nrow=p)
diag(Gamma) <- rep(x,p)
U <- matrix(ncol = sum(n),nrow=p)
for(i in 1:sum(n)){
U[,i] <- rnorm(p,0,1)
}
Y <- X%*%Theta+t(U)%*%Gamma
C <- cbind(diag(q),-rep(1,q))
glht_sf2006(Y,X,C)



[Package HDNRA version 1.0.0 Index]