glht_fhw2004 {HDNRA} | R Documentation |
Test proposed by Fujikoshi et al. (2004)
Description
Fujikoshi et al. (2004)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data with assuming that underlying covariance matrices are the same.
Usage
glht_fhw2004(Y,X,C)
Arguments
Y |
An |
X |
A known |
C |
A known matrix of size |
Details
A high-dimensional linear regression model can be expressed as
\boldsymbol{Y}=\boldsymbol{X\Theta}+\boldsymbol{\epsilon},
where \Theta
is a k\times p
unknown parameter matrix and \boldsymbol{\epsilon}
is an n\times p
error matrix.
It is of interest to test the following GLHT problem
H_0: \boldsymbol{C\Theta}=\boldsymbol{0}, \quad \text { vs. } \quad H_1: \boldsymbol{C\Theta} \neq \boldsymbol{0}.
Fujikoshi et al. (2004) proposed the following test statistic:
T_{FHW}=\sqrt{p}\left[(n-k)\frac{\operatorname{tr}(\boldsymbol{S}_h)}{\operatorname{tr}(\boldsymbol{S}_e)}-q\right],
where \boldsymbol{S}_h
and \boldsymbol{S}_e
are the matrices of sums of squares and products due to the hypothesis and the error, respecitively.
They showed that under the null hypothesis, T_{FHW}
is asymptotically normally distributed.
Value
A (list) object of S3
class htest
containing the following elements:
- statistic
the test statistic proposed by Fujikoshi et al. (2004).
- p.value
the
p
-value of the test proposed by Fujikoshi et al. (2004).
References
Fujikoshi Y, Himeno T, Wakaki H (2004). “Asymptotic results of a high dimensional MANOVA test and power comparison when the dimension is large compared to the sample size.” Journal of the Japan Statistical Society, 34(1), 19–26. doi:10.14490/jjss.34.19.
Examples
set.seed(1234)
k <- 3
q <- k-1
p <- 50
n <- c(25,30,40)
rho <- 0.01
Theta <- matrix(rep(0,k*p),nrow=k)
X <- matrix(c(rep(1,n[1]),rep(0,sum(n)),rep(1,n[2]),rep(0,sum(n)),rep(1,n[3])),ncol=k,nrow=sum(n))
y <- (-2*sqrt(1-rho)+sqrt(4*(1-rho)+4*p*rho))/(2*p)
x <- y+sqrt((1-rho))
Gamma <- matrix(rep(y,p*p),nrow=p)
diag(Gamma) <- rep(x,p)
U <- matrix(ncol = sum(n),nrow=p)
for(i in 1:sum(n)){
U[,i] <- rnorm(p,0,1)
}
Y <- X%*%Theta+t(U)%*%Gamma
C <- cbind(diag(q),-rep(1,q))
glht_fhw2004(Y,X,C)