| alpha_PCA {HDMFA} | R Documentation | 
Statistical Inference for High-Dimensional Matrix-Variate Factor Model
Description
This function is to fit the matrix factor model via the \alpha-PCA method by conducting eigen-analysis of a weighted average of the sample mean and the column (row) sample covariance matrix through a hyper-parameter \alpha.
Usage
alpha_PCA(X, m1, m2, alpha = 0)
Arguments
X | 
 Input an array with   | 
m1 | 
 A positive integer indicating the row factor numbers.  | 
m2 | 
 A positive integer indicating the column factor numbers.  | 
alpha | 
 A hyper-parameter balancing the information of the first and second moments    (  | 
Details
For the matrix factor models, Chen & Fan (2021) propose an estimation procedure, i.e. \alpha-PCA. The method aggregates the information in both first and second moments and extract it via a spectral method. In detail, for observations \bold{X}_t, t=1,2,\cdots,T, define 
\hat{\bold{M}}_R = \frac{1}{p_1 p_2} \left( (1+\alpha) \bar{\bold{X}} \bar{\bold{X}}^\top + \frac{1}{T} \sum_{t=1}^T (\bold{X}_t - \bar{\bold{X}}) (\bold{X}_t - \bar{\bold{X}})^\top \right),
\hat{\bold{M}}_C = \frac{1}{p_1 p_2} \left( (1+\alpha) \bar{\bold{X}}^\top \bar{\bold{X}} + \frac{1}{T} \sum_{t=1}^T (\bold{X}_t - \bar{\bold{X}})^\top (\bold{X}_t - \bar{\bold{X}}) \right),
where \alpha \in [-1,+\infty], \bar{\bold{X}} = \frac{1}{T} \sum_{t=1}^T \bold{X}_t, \frac{1}{T} \sum_{t=1}^T (\bold{X}_t - \bar{\bold{X}}) (\bold{X}_t - \bar{\bold{X}})^\top and \frac{1}{T} \sum_{t=1}^T (\bold{X}_t - \bar{\bold{X}})^\top (\bold{X}_t - \bar{\bold{X}}) are the sample row and column covariance matrix, respectively. The loading matrices \bold{R} and \bold{C} are estimated as \sqrt{p_1} times the top k_1 eigenvectors of \hat{\bold{M}}_R and \sqrt{p_2} times the top k_2 eigenvectors of \hat{\bold{M}}_C, respectively. For details, see Chen & Fan (2021). 
Value
The return value is a list. In this list, it contains the following:
F | 
 The estimated factor matrix of dimension   | 
R | 
 The estimated row loading matrix of dimension   | 
C | 
 The estimated column loading matrix of dimension   | 
Author(s)
Yong He, Changwei Zhao, Ran Zhao.
References
Chen, E. Y., & Fan, J. (2021). Statistical inference for high-dimensional matrix-variate factor models. Journal of the American Statistical Association, 1-18.
Examples
   set.seed(11111)
   T=20;p1=20;p2=20;k1=3;k2=3
   R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
   C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
   X=array(0,c(T,p1,p2))
   Y=X;E=Y
   F=array(0,c(T,k1,k2))
   for(t in 1:T){
     F[t,,]=matrix(rnorm(k1*k2),k1,k2)
     E[t,,]=matrix(rnorm(p1*p2),p1,p2)
     Y[t,,]=R%*%F[t,,]%*%t(C)
   }
   X=Y+E
   
   #Estimate the factor matrices and loadings
   fit=alpha_PCA(X, k1, k2, alpha = 0)
   Rhat=fit$R 
   Chat=fit$C
   Fhat=fit$F
   
   #Estimate the common component
   CC=array(0,c(T,p1,p2))
   for (t in 1:T){
   CC[t,,]=Rhat%*%Fhat[t,,]%*%t(Chat)
   }
   CC