KPE {HDMFA} | R Documentation |
Estimating the Pair of Factor Numbers via Eigenvalue Ratios Corresponding to PE
Description
The function is to estimate the pair of factor numbers via eigenvalue ratios corresponding to PE method.
Usage
KPE(X, kmax, c = 0)
Arguments
X |
Input an array with |
kmax |
The user-supplied maximum factor numbers. Here it means the upper bound of the number of row factors and column factors. |
c |
A constant to avoid vanishing denominators. The default is 0. |
Details
The function KPE
uses the eigenvalue-ratio idea to estimate the number of factors.
First, obtain the initial estimators \hat{\bold{R}}
and \hat{\bold{C}}
. Second, define
\hat{\bold{Y}}_t=\frac{1}{p_2}\bold{X}_t\hat{\bold{C}}, \hat{\bold{Z}}_t=\frac{1}{p_1}\bold{X}_t^\top\hat{\bold{R}},
and
\tilde{\bold{M}}_1=\frac{1}{Tp_1}\hat{\bold{Y}}_t\hat{\bold{Y}}_t^\top, \tilde{\bold{M}}_2=\frac{1}{Tp_2}\sum_{t=1}^T\hat{\bold{Z}}_t\hat{\bold{Z}}_t^\top,
the number of factors k_1
is estimated by
\hat{k}_1 = \arg \max_{j \leq k_{max}} \frac{\lambda_j (\tilde{\bold{M}}_1)}{\lambda _{j+1} (\tilde{\bold{M}}_1)},
where k_{max}
is a predetermined upper bound for k_1
. The estimation of k_2
is defined similarly with respect to \tilde{\bold{M}}_2
.
For details, see Yu et al. (2022).
Value
\eqn{k_1} |
The estimated row factor number. |
\eqn{k_2} |
The estimated column factor number. |
Author(s)
Yong He, Changwei Zhao, Ran Zhao.
References
Yu, L., He, Y., Kong, X., & Zhang, X. (2022). Projected estimation for large-dimensional matrix factor models. Journal of Econometrics, 229(1), 201-217.
Examples
set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){
F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)
}
X=Y+E
KPE(X, 8, c = 0)