KPCA {HDMFA} | R Documentation |
Estimating the Pair of Factor Numbers via Eigenvalue Ratios Corresponding to \alpha
-PCA
Description
The function is to estimate the pair of factor numbers via eigenvalue ratios corresponding to \alpha
-PCA.
Usage
KPCA(X, kmax, alpha = 0)
Arguments
X |
Input an array with |
kmax |
The user-supplied maximum factor numbers. Here it means the upper bound of the number of row factors and column factors. |
alpha |
A hyper-parameter balancing the information of the first and second moments ( |
Details
The function KPCA
uses the eigenvalue-ratio idea to estimate the number of factors. In details, the number of factors k_1
is estimated by
\hat{k}_1 = \arg \max_{j \leq k_{max}} \frac{\lambda _j (\hat{\bold{M}}_R)}{\lambda _{j+1} (\hat{\bold{M}}_R)},
where k_{max}
is a given upper bound. k_2
is defined similarly with respect to \hat{\bold{M}}_C
. See the function alpha_PCA
for the definition of \hat{\bold{M}}_R
and \hat{\bold{M}}_C
. For more details, see Chen & Fan (2021).
Value
\eqn{k_1} |
The estimated row factor number. |
\eqn{k_2} |
The estimated column factor number. |
Author(s)
Yong He, Changwei Zhao, Ran Zhao.
References
Chen, E. Y., & Fan, J. (2021). Statistical inference for high-dimensional matrix-variate factor models. Journal of the American Statistical Association, 1-18.
Examples
set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){
F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)
}
X=Y+E
KPCA(X, 8, alpha = 0)