gMADD {HDLSSkST} | R Documentation |
Modified K-Means Algorithm by Using a New Dissimilarity Measure, MADD
Description
Performs modified K-means algorithm by using a new dissimilarity measure, called MADD, and provides estimated cluster (class) labels or memberships of observations.
Usage
gMADD(s_psi, s_h, n_clust, lb, M)
Arguments
s_psi |
function required for clustering, 1 for |
s_h |
function required for clustering, 1 for |
n_clust |
total number of the classes in the whole observations |
lb |
each observation is partitioned into some numbers of smaller vectors of same length |
M |
|
Value
a vector of length n of estimated cluster (class) labels of observations
Author(s)
Biplab Paul, Shyamal K. De and Anil K. Ghosh
Maintainer: Biplab Paul<paul.biplab497@gmail.com>
References
Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, Journal of Multivariate Analysis, doi:10.1016/j.jmva.2021.104897.
Soham Sarkar and Anil K Ghosh (2019). On perfect clustering of high dimension, low sample size data, IEEE transactions on pattern analysis and machine intelligence, doi:10.1109/TPAMI.2019.2912599.
Examples
# Modified K-means algorithm:
# muiltivariate normal distribution
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)
n_cl <- 4
X <- as.matrix(rbind(I1,I2,I3,I4))
gMADD(1,1,n_cl,1,X)
## outputs:
#[1] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3