MTRItest {HDLSSkST} | R Documentation |
k-Sample MTRI Test of Equal Distributions
Description
Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime. This test is a multiscale approach based on RI test, where the results for different number of partitions are aggregated judiciously.
Usage
MTRItest(M, labels, sizes, k_max, multTest = "Holm", s_psi = 1, s_h = 1,
lb = 1, n_sts = 1000, alpha = 0.05)
Arguments
M |
|
labels |
length |
sizes |
vector of sample sizes |
k_max |
maximum value of total number of clusters which is required for the test |
multTest |
|
s_psi |
function required for clustering, 1 for |
s_h |
function required for clustering, 1 for |
lb |
each observation is partitioned into some numbers of smaller vectors of same length |
n_sts |
number of simulation of the test statistic, default: |
alpha |
numeric, confidence level |
Value
MTRItest returns a list containing the following items:
RIvec |
a vector of the Rand indices based on different number of clusters |
Pvalues |
a vector of RI test p-values based on different number of clusters |
decisionMTRI |
if returns |
contTabs |
a list of the observed contingency table based on different number of clusters |
mulTestdec |
a vector of |
Author(s)
Biplab Paul, Shyamal K. De and Anil K. Ghosh
Maintainer: Biplab Paul<paul.biplab497@gmail.com>
References
Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, Journal of Multivariate Analysis, doi:10.1016/j.jmva.2021.104897.
Sture Holm (1979). A simple sequentially rejective multiple test procedure, Scandinavian journal of statistics, 65-70, doi:10.2307/4615733.
Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal statistical society: series B (Methodological) 57.1: 289-300, doi: 10.2307/2346101.
Examples
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)
levels <- c(rep(0,n1), rep(1,n2), rep(2,n3), rep(3,n4))
X <- as.matrix(rbind(I1,I2,I3,I4))
#MTRI test:
results <- MTRItest(X, levels, c(n1,n2,n3,n4), 8)
## outputs:
results$RIvec
#[1] 0.25641026 0.14871795 0.00000000 0.03076923 0.05128205 0.08333333 0.10384615
results$Pvalues
#[1] 0 0 0 0 0 0 0
results$decisionMTRI
#[1] 1
results$contTabs
#$contTabs[[1]]
# [,1] [,2]
#[1,] 10 0
#[2,] 10 0
#[3,] 0 10
#[4,] 0 10
#$contTabs[[2]]
# [,1] [,2] [,3]
#[1,] 10 0 0
#[2,] 0 10 0
#[3,] 0 10 0
#[4,] 0 0 10
#$contTabs[[3]]
# [,1] [,2] [,3] [,4]
#[1,] 10 0 0 0
#[2,] 0 10 0 0
#[3,] 0 0 10 0
#[4,] 0 0 0 10
#$contTabs[[4]]
# [,1] [,2] [,3] [,4] [,5]
#[1,] 10 0 0 0 0
#[2,] 0 10 0 0 0
#[3,] 0 0 4 6 0
#[4,] 0 0 0 0 10
#$contTabs[[5]]
# [,1] [,2] [,3] [,4] [,5] [,6]
#[1,] 10 0 0 0 0 0
#[2,] 0 10 0 0 0 0
#[3,] 0 0 4 6 0 0
#[4,] 0 0 0 0 8 2
#$contTabs[[6]]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#[1,] 10 0 0 0 0 0 0
#[2,] 0 5 5 0 0 0 0
#[3,] 0 0 0 4 6 0 0
#[4,] 0 0 0 0 0 8 2
#$contTabs[[7]]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#[1,] 8 2 0 0 0 0 0 0
#[2,] 0 0 5 5 0 0 0 0
#[3,] 0 0 0 0 4 6 0 0
#[4,] 0 0 0 0 0 0 8 2
results$mulTestdec
#[1] 1 1 1 1 1 1 1