| HDGLM_test {HDGLM} | R Documentation | 
Tests the Coefficients of High Dimensional Generalized Linear Models
Description
Tests for whole or partial regression coefficient vectors for high dimensional generalized linear models.
Usage
HDGLM_test(Y, X, beta_0 = NULL, nuisance = NULL, model = "gaussian")
Arguments
| Y | a vector of observations of length  | 
| X | a design matrix with  | 
| beta_0 | a vector with length  | 
| nuisance | an index indicating which coefficients are nuisance parameter. The default is  | 
| model | a character string to describe the model and link function. The default is  | 
Value
An object of class "HDGLM_test" is a list containing the following components:
| test_stat | the standardized test statistic | 
| test_pvalue | pvalue of the test against the null hypothesis | 
Note
In global test,  the function "HDGLM_test" can deal with the null hypothesis with non-zero coefficients (\beta_0). However, in test with nuisance coefficient,
the function can only deal with the null hypothesis with zero coefficients (\beta_0^{(2)}) in this version.
Author(s)
Bin Guo
References
Guo, B. and Chen, S. X. (2015). Tests for High Dimensional Generalized Linear Models.
Examples
## Example: Linear model
## Global test: if the null hypothesis is true (beta_0=0)
alpha=runif(5,min=0,max=1)
## Generate the data
DGP_0=DGP(80,320,alpha)
result=HDGLM_test(DGP_0$Y,DGP_0$X)
## Pvalue
result$test_pvalue
## Global test: if the alternative hypothesis is true
## (the square of the norm of the first 5 nonzero coefficients to be 0.2)
## Generate the data
DGP_0=DGP(80,320,alpha,sqrt(0.2),5)
result=HDGLM_test(DGP_0$Y,DGP_0$X)
## Pvalue
result$test_pvalue
## Test with nuisance coefficients: if the null hypothesis is true (beta_0^{(2)}=0)
## The first 10 coefficients to be the nuisance coefficients
betanui=runif(10,min=0,max=1)
## Generate the data
DGP_0=DGP(80,320,alpha,0,no=NA,betanui)
result=HDGLM_test(DGP_0$Y,DGP_0$X,nuisance=c(1:10))
## Pvalue
result$test_pvalue
## Test with nuisance coefficients: if the alternative hypothesis is true
## (the square of the norm of the first 5 nonzero coefficients in beta_0^{(2)} to be 2)
## The first 10 coefficients to be the nuisance coefficients
betanui=runif(10,min=0,max=1)
## Generate the data
DGP_0=DGP(80,330,alpha,sqrt(2),no=5,betanui)
result=HDGLM_test(DGP_0$Y,DGP_0$X,nuisance=c(1:10))
## Pvalue
result$test_pvalue