single_SBS {HDCD} | R Documentation |
Sparsified Binary Segmentation for single change-point estimation
Description
R wrapper for C function for single change-point estimation using Sparsified Binary Segmentation Cho and Fryzlewicz (2015).
Usage
single_SBS(
X,
threshold = NULL,
rescale_variance = TRUE,
empirical = FALSE,
N = 100,
tol = 1/100,
debug = FALSE
)
Arguments
X |
Matrix of observations, where each row contains a time series |
threshold |
Manually specified value of the threshold |
rescale_variance |
If |
empirical |
If |
N |
If |
tol |
If |
debug |
If |
Value
A list containing
pos |
estimated change-point location |
maxval |
maximum thresholded and aggregated CUSUM at the estimated change-point position |
References
Cho H, Fryzlewicz P (2015). “Multiple-change-point detection for high dimensional time series via sparsified binary segmentation.” Journal of the Royal Statistical Society. Series B (Statistical Methodology), 77(2), 475–507. ISSN 1369-7412, Publisher: [Royal Statistical Society, Wiley], https://www.jstor.org/stable/24774746.
Examples
# Single SBS
library(HDCD)
n = 50
p = 50
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
res = single_SBS(X,threshold=7,rescale_variance=TRUE)
res$pos
# Choose threhsold by Monte Carlo:
res = single_SBS(X,empirical=TRUE,rescale_variance=TRUE)
res$pos