single_Inspect {HDCD} | R Documentation |
Inspect for single change-point estimation
Description
R wrapper for C function for single change-point estimation using Inspect (Wang and Samworth 2018). Note that the algorithm is only implemented for \mathcal{S} = \mathcal{S}_2
, in the notation of Wang and Samworth (2018).
Usage
single_Inspect(
X,
lambda = sqrt(log(p * log(n))/2),
eps = 1e-10,
rescale_variance = FALSE,
maxiter = 10000,
debug = FALSE
)
Arguments
X |
Matrix of observations, where each row contains a time series |
lambda |
Manually specified value of |
eps |
Threshold for declaring numerical convergence of the power method |
rescale_variance |
If |
maxiter |
Maximum number of iterations for the power method |
debug |
If |
Value
A list containing
pos |
estimated change-point location |
CUSUMval |
projected CUSUM value at the estimated change-point position |
References
Wang T, Samworth RJ (2018). “High dimensional change point estimation via sparse projection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243.
Examples
library(HDCD)
n = 500
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1
res = single_Inspect(X,rescale_variance=TRUE)
res$pos
# Manually setting the value of \lambda:
res = single_Inspect(X, lambda = 2*sqrt(log(p*log(n))/2))
res$pos